

conga-TCA7

COM Express 3.0 Type 6 Compact Module with Intel® Elkhart Lake Processors

User's Guide

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
0.1	2021-07-31	AEM	Preliminary release
0.2	2021-11-16	AEM	 Deleted HDMI references in table 4 "Feature Summary" Changed table 17 to TMDS Signal Description
1.00	2022-02-15	AEM	 Added Windows 10 to section 2.2 "Supported Operating Systems" Updated table 6 "Power Consumption Values" and table 7 "CMOS Battery Power Consumption" Corrected DisplayPort specification in section 5.1.2.1 "DisplayPort (DP)" Added note about CSM to section 2.2 "Supported Operating Systems" Deleted section 6.4.4 "OEM BIOS Code/Data" Official release
1.01	2022-07-26	AEM	Corrected the number of PCIe lanes in section 3 "Block Diagram"
1.02	2023-01-26	AEM	 Updated the note about CMOS battery in section 2. "Supply Voltage Battery Power" Added Intel Use Condition and Dynamic Temperature Range to tables 2 "Commercial Variants" and 3 "Industrial Variants" Updated the number of SATA ports in section 3 "Block diagram" Corrected the pin numbers of USB port 0 and 1 in table 23 "USB 2.0 Signal Descriptions" Added note to section 5.1.7 "UART" Updated section 6.3.4 "Power Loss Control" Updated the note in table 29 "Miscellaneous Signal Descriptions" and table 35 "General Purpose Serial Interface Signal Descriptions" Added note to table 31 "Power and System Management Signal Descriptions"
1.03	2023-07-26	AEM	 Corrected the maximum CPU Tjunction for Intel® Atom® x6425RE processor in table 3 "Industrial Variants" Updated section 5.1.7 "UART" Added section 5.1.8 "CAN Bus" Updated section 6.3.6 "Enhanced Soft-Off State"
1.04	2023-10-30	AEM	 Updated the title page Added a note about optimal storage conditions to section 2.7 "Environmental Specifications" Updated section 4 "Block Diagram" Added a note about S3 issue on Windows 10 to section 2.2 "Supported Operating Systems" Added section 5.1.7 "SD Card" Rephrased section 5.1.8 "UART" Updated section 6.3.6 "Power Loss Control" Added a note about the effect of disabling eMMC controller to section 6.1.1 "eMMC"
1.05	2024-01-30	AEM	 Added Windows 11 support to section 2.2 "Supported Operating Systems" Added a note about the storage of congatec cooling solutions to section 4 "Cooling Solutions" Updated section 6.3 "congatec Board Controller"

1.06	2024-05-06	AEM	 Updated the preface section Moved the storage note from sections 2.7 "Environmental Specifications" and 4 "Cooling Solutions" to section 2.9 "Storage Specifications" Added section 2.8 "Storage Specifications" Added section 6.1 "Integrated Real-Time Hypervisor"
1.07	2024-11-08	AEM	 Updated the environmental specifications for humidy in section 2.7 "Environmental Specifications" Corrected the PCB thickness in section 2.3 "Mechanical Dimensions" Added information about SDIO speed limitation to section 5.1.10 "GPIOs/SDIO" Added a caution to table 13 "Connector C-D Pinout" Updated section 6.1 "Integrated Real-Time Hypervisor

Preface

This user's guide provides information about the components, features, connectors, system resources and BIOS features available on the conga-TCA7. It is one of three documents that should be referred to when designing a COM Express application. The other reference documents that should be used include the following:

- COM Express® Module Base Specification
- COM Express® Carrier Design Guide

These documents are available on the PICMG website at www.picmg.org. Additionally, check the restricted area of the congatec website at www.congatec.com and the website of the respective silicon vendor for relevant documents (Erratum, PCN, Sighting Reports and others).

Software Licences

Notice Regarding Open Source Software

The congatec products contain Open Source software that has been released by programmers under specific licensing requirements such as the "General Public License" (GPL) Version 2 or 3, the "Lesser General Public License" (LGPL), the "ApacheLicense" or similar licenses.

You can find the specific details at https://www.congatec.com/en/licenses/. Search for the revision of the BIOS/UEFI or Board Controller Software (as shown in the POST screen or BIOS setup) to get the complete product related license information. To the extent that any accompanying material such as instruction manuals, handbooks etc. contain copyright notices, conditions of use or licensing requirements that contradict any applicable Open Source license, these conditions are inapplicable.

The use and distribution of any Open Source software contained in the product is exclusively governed by the respective Open Source license. The Open Source software is provided by its programmers without ANY WARRANTY, whether implied or expressed, of any fitness for a particular purpose, and the programmers DECLINE ALL LIABILITY for damages, direct or indirect, that result from the use of this software.

OEM/ CGUTL BIOS

BIOS/UEFI modified by customer via the congatec System Utility (CGUTL) is subject to the same license as the BIOS/UEFI it is based on. You can find the specific details at https://www.congatec.com/en/licenses/.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec GmbH provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec GmbH assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec GmbH be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

RoHS Directive

All congatec GmbH designs comply with EU RoHS Directive 2011/65/EU and Delegated Directive 2015/863.

Electrostatic Sensitive Device

All congatec GmbH products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec GmbH Limited Warranty.

Copyright Notice

Copyright © 2021, congatec GmbH. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec GmbH.

congatec GmbH has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec GmbH, our products, or our website.

Certification

congatec GmbH is certified to DIN EN ISO 9001 standard.

Warranty

congatec GmbH makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec GmbH may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec GmbH represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec GmbH prior to returning the non conforming product freight prepaid. congatec GmbH will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec GmbH shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Technical Support

congatec GmbH technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com.

Terminology

Term	Description
CSA	Active Cooling Solution
CSP	Passive Cooling Solution
CAN	Controller Area Networt
cBC	congatec Board Controller
СОМ	Computer-on-Module
DDC	Display Data Channel
DTR	Dynamic Temperature Range
eMMC	Embedded Multi-media Controller
GB	Gigabyte
Gbe	Gigabit Ethernet
GHz	Gigahertz
HDA	High Definition Audio
HSP	Heatspreader
KB	Kilobyte
KHz	Kilohertz
LVDS	Low-Voltage Differential Signaling
MB	Megabyte
Mbit	Megabit
MHz	Megahertz
MT/s	Megatransfers per second
N.A.	Not available
N.C.	Not connected
PCle	PCI Express
PWM	Pulse Width Modulation
RTS	Real Time Systems
SATA	Serial ATA
SoC	System On Chip
TBD	To be determined
TDP	Thermal Design Power
UART	Universal Asynchronous Receiver/Transmitter

Contents

1	Introduction	12	5.1.8	UART	
1.1	Options Information	13	5.1.9	CAN Bus	
-	·		5.1.10	GPIOs/SDIO	
2	Specifications	15	5.1.11	LPC Bus	
2.1	Feature List	15	5.1.12	I ² C Bus	
2.2	Supported Operating Systems		5.1.13	SPI	
2.3	Mechanical Dimensions		5.1.14	Power Control	
2.4	Supply Voltage Standard Power		5.1.15	Power Management	34
2.4.1	Electrical Characteristics		6	Additional Features	35
2.4.2	Rise Time				
2.5	Power Consumption		6.1	Integrated Real-Time Hypervisor	
2.6	Supply Voltage Battery Power		6.2	eMMC	
2.7	Environmental Specifications		6.3	TPM	
2.8	Storage Specifications		6.4	congatec Board Controller (cBC)	
2.8.1	Module		6.4.1	Board Information	
2.8.2	Cooling Solution		6.4.2	Fan Control	
	3		6.4.3	Watchdog	
3	Block Diagram	21	6.4.4	Enhanced Soft-Off State	
4		00	6.4.5	Power Loss Control	
4	Cooling Solutions	22	6.5	OEM BIOS Customization	
4.1	CSP Dimensions	23	6.5.1	OEM Default Settings	
4.2	HSP Dimensions	25	6.5.2	OEM Boot Logo	
5	Connector Rows	27	6.5.3	OEM POST Logo	
3			6.5.4	OEM DXE Driver	39
5.1	Primary and Secondary Connector Rows		6.6	congatec Battery Management Interface	
5.1.1	PCI Express TM	27	6.7	API Support (CGOS)	40
5.1.2	Display Interface		6.8	Suspend to Ram	40
5.1.2.1	DisplayPort (DP)	28	7	conga Tech Notes	<i>Δ</i> 1
5.1.2.2	LVDS	28			
5.1.2.3	Optional eDP	29	7.1	Intel® Elkhart Lake SoC Features	
5.1.3	SATA	29	7.1.1	Processor Core	
5.1.4	USB	29	7.1.1.1	Intel Virtualization Technology	
5.1.5	Gigabit Ethernet	30	7.1.1.2	Thermal Management	
5.1.6	Audio (HDA)	30	7.2	ACPI Suspend Modes and Resume Events	43
5.1.7	SD Card	30	8	Signal Descriptions and Pinout Tables	44

3.1 3.2	Connector Signal Descriptions Bootstrap Signals	
)	System Resources	68
9.1 9.1.1 9.2 9.3 9.4	I/O Address Assignment LPC Bus PCI Configuration Space Map I ² C Bus SMBus	68 69 70
10	BIOS Setup Description	71
0.1 0.2 0.3 10.3.1	Navigating the BIOS Setup Menu	71 72
0.4	Supported Flash Devices	

List of Tables

Table 1	COM Express™ 3.0 Pinout Types	12
Table 2	Commercial Variants	
Table 3	Industrial Variants	14
Table 4	Feature Summary	15
Table 5	Measurement Description	18
Table 6	Power Consumption Values	19
Table 7	CMOS Battery Power Consumption	19
Table 8	Cooling Solution Variants	22
Table 9	Display Combinations and Resolutions	28
Table 10	Wake Events	
Table 11	Signal Tables Terminology Descriptions	44
Table 12	Connector A–B Pinout	45
Table 13	Connector C–D Pinout	
Table 14	PCI Express Signal Descriptions (General Purpose)	49
Table 15	PCI Express Signal Descriptions (x16 Graphics)	50
Table 16	DDI Signal Description	52
Table 17	TMDS Signal Descriptions	53
Table 18	DisplayPort (DP) Signal Descriptions	54
Table 19	Embedded DisplayPort Signal Descriptions	56
Table 20	CRT Signal Descriptions	
Table 21	LVDS Signal Descriptions	57
Table 22	Serial ATA Signal Descriptions	57
Table 23	USB 2. 0 Signal Descriptions	58
Table 24	USB 3.0 Signal Descriptions	59
Table 25	Gigabit Ethernet Signal Descriptions	59
Table 26	High Definition Audio Link Signals Descriptions	60
Table 27	LPC Signal Descriptions	61
Table 28	SPI BIOS Flash Interface Signal Descriptions	61
Table 29	Miscellaneous Signal Descriptions	62
Table 30	General Purpose I/O Signal Descriptions	62
Table 31	Power and System Management Signal Descriptions	63
Table 32	Rapid Shutdown Signal Descriptions	64
Table 33	Thermal Protection Signal Descriptions	64
Table 34	SMBus Signal Description	64
Table 35	General Purpose Serial Interface Signal Descriptions	64

Table 36	Module Type Definition Signal Description	65
	Power and GND Signal Descriptions	
	Bootstrap Signal Descriptions	
	I/O Address Assignment	
	PCI Configuration Space Map	
	5 1 1	

1 Introduction

COM ExpressTM is an open industry standard defined specifically for COMs (Computer-on-Modules). Its creation makes it possible to smoothly transition from legacy interfaces to the newest technologies available today. COM ExpressTM modules are available in following form factors:

Mini 84 mm x 55 mm
 Compact 95 mm x 95 mm
 Basic 125 mm x 95 mm
 Extended 155 mm x 110 mm

Table 1 COM Express™ 3.0 Pinout Types

Types	Connector	PCIe Lanes	PEG	SATA Ports	LAN ports	USB 2.0/	Display Interfaces
	Rows					SuperSpeed USB	
Туре 6	A-B C-D	Up to 24	1	Up to 4	1	Up to 8 / 4 ¹	VGA,LVDS/eDP, PEG, 3x DDI
Type 7	A-B C-D	Up to 32	-	Up to 2	5 (1x 1 Gb, 4x 10 Gb)	Up to 4 / 4	
Type 10	A-B	Up to 4	-	Up to 2	1	Up to 8 / 2 1	LVDS/eDP, 1xDDI

^{1.} The SuperSpeed USB ports (USB 3.0) are not in addition to the USB 2.0 ports. Ports that support SuperSpeed USB 3.0 also support USB 2.0.

The conga-TCA7 modules use the Type 6 pinout definition and comply with COM Express 3.0 specification. They are equipped with two high performance connectors that ensure stable data throughput.

The COM integrates all the core components of a common PC and is mounted onto an application-specific carrier board. COM modules are legacy-free design (no Super I/O, PS/2 keyboard and mouse) and provide most of the functional requirements for any application. These functions include, but are not limited to a rich complement of contemporary high bandwidth serial interfaces such as PCI Express, Serial ATA, USB 2.0, and Gigabit Ethernet. The Type 6 pinout provides the ability to offer PCI Express, Serial ATA, and LPC options thereby expanding the range of potential peripherals. The robust thermal and mechanical concept, combined with extended power-management capabilities, is perfectly suited for all applications.

Carrier board designers can use as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration.

Most importantly, COM Express™ modules are scalable. Once an application has been created, the product range can be diversified by using different performance-class or form-factor size modules. Simply unplug one module and replace it with another; redesign is not necessary.

1.1 Options Information

The conga-TCA7 is available in eight variants (five commercial and three industrial). The table below shows the different configurations available.

Table 2 Commercial Variants

Part-No		049300	049301	049302	049320	049321	
Processor		Intel® Atom® x6425E 2.0 GHz, Quad Core	Intel® Atom® x6413E 1.5 GHz, Quad Core	Intel® Atom® x6211E 1.3 GHz, Dual Core	Intel® Pentium® J6426 2.0 GHz, Quad Core	Intel® Celeron® J6413 1.8 GHz, Quad Core	
Burst Freq		3.0 GHz	3.0 GHz	3.0 GHz	3.0 GHz	3.0 GHz	
L2 Cache		1.5 MB	1.5 MB	1.5 MB	1.5 MB	1.5 MB	
Graphics		Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics	Intel® UHD Graphics	
GFX Base/	Burst Freq.	500 / 750 MHz	500 / 750 MHz	350 / 750 MHz	400 / 850 MHz	400 / 800 MHz	
Memory (DDR4)		32 GB, 3200 MTps dual channel	32 GB, 3200 MTps dual channel				
TPM (Discr	ete)	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	
SD Card		1x 4-bit	1x 4-bit	1x 4-bit	1x 4-bit	1x 4-bit	
Max. TDP		12 W	9 W	6 W	10 W	10 W	
CPU Use C	Condition ¹	Embedded	Embedded	Embedded	PC Client	PC Client	
CPU	Min.	-40°C	-40°C	-40°C	0°C	0°C	
Tjunction	Max.	105°C	105°C	105°C	105°C	105°C	
DTR (Cold to Hot Transition) ²		T _{Boot} + 90°C	T _{Boot} + 90°C	T _{Boot} + 90°C	T _{Boot} + 70°C	T _{Boot} + 70°C	
DTR (Hot t Transition)		T _{Boot} - 90°C	T _{Boot} - 90°C	T _{Boot} - 90°C	T _{Boot} - 70°C	T _{Boot} - 70°C	

^{1.} Intel SoC use conditions. For more information, see Intel documentation.

^{2.} T_{Boot} is the boot temperature. If the Tjunction is not within the DTR range, you must reboot the system. See Intel documentation for more information.

Table 3 Industrial Variants

Part-No		049310	049311	049312	
Processor		Intel® Atom® x6425RE	Intel® Atom® x6414RE	Intel® Atom® x6212RE	
		1.9 GHz, Quad Core	1.5 GHz, Quad Core	1.2 GHz, Dual Core	
Burst Freq.		N.A	N.A	N.A	
L2 Cache		1.5 MB	1.5 MB	1.5 MB	
Graphics		Intel® UHD Graphics	Intel® HD Graphics 500	Intel® HD Graphics 505	
GFX Base/I	Burst Freq.	400 MHz/ N.A	400 MHz/ N.A	350 MHz/ N.A	
Memory (D	DR4)	32 GB, 3200 MTps	32 GB, 3200 MTps	32 GB, 3200 MTps	
		dual channel	dual channel	dual channel	
TPM (Discre	ete)	Infineon SLB9670	Infineon SLB9670	Infineon SLB9670	
SD Card		1x 4-bit	1x 4-bit	1x 4-bit	
Max. TDP		12 W	9 W	6 W	
CPU Use C	Condition 1	Industrial	Industrial	Industrial	
CPU	Min.	-40°C	-40°C	-40°C	
Tjunction	Max.	110°C	110°C	110°C	
DTR (Cold to Hot Transition) ^{2, 3}		T _{Boot} + 90°C	T _{Boot} + 90°C	T _{Boot} + 90°C	
		T _{Boot} + 110°C	T _{Boot} + 110°C	T _{Boot} + 110°C	
DTR (Hot to Transition)		T _{Boot} - 90°C	T _{Boot} - 90°C	T _{Boot} - 90°C	
		T _{Boot} - 110°C	T _{Boot} - 110°C	T _{Boot} - 110°C	

^{1.} Intel SoC use conditions. For more information, see Intel documentation.

^{2.} T_{Boot} is the boot temperature. If the Tjunction is not within the DTR range, you must reboot the system. See Intel documentation for more information.

^{3.} For DTR of $\pm 110^{\circ}$ C, the speed of any enabled USB 3.1 port must be limited to 5 Gb/s.

2 Specifications

2.1 Feature List

Table 4 Feature Summary

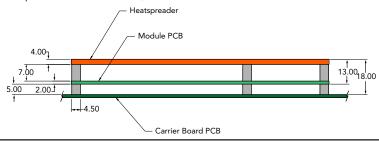
Form Factor	Based on COM Express™ standard pinout Type 6 revision 3.0 (Compact size 95 x 95 mm)					
Processor	Intel® Atom®, Pentium® and Celeron SoCs					
Memory	Two memory sockets (located on the top and bottom side). Supports - SO-DIMM non-ECC DDR4 modules - Data rates up to 3200 MT/s - Maximum 32 GB capacity					
Chipset	Integrated in the SoC					
Audio	High Definition Audio					
Ethernet	1x Gigabit Ethernet with TSN support via TI DP83867E	Ethernet PHY				
Graphics Options	Intel® UHD (Gen 11). Supports: - API (DirectX 12.1, OpenGL 4.5, OpenCL 1.2, Ope - Intel® QuickSync & Clear Video Technology HD (kgrade) - Up to 3 independent displays (must be two DDI's 1x LVDS (dual channel)	nardware accelerated video decode/encode/processing/transcode)				
	2x DP++	Optional IX eDF 1.3 1/2				
Peripheral Interfaces	6x PCIe® Gen3 ports 2x SATA® (6 Gbps) 8x USB 2.0 (Up to 2x USB 3.1 Gen 2) 2x UART GPIOs/SDIO	Optional eMMC 5.1 ² LPC SPI I ² C (fast mode, multi-master) SMBus				
congatec Board Controller	Multi-stage watchdog, non-volatile user data storage, m I ² C bus, Power loss control	anufacturing and board information, board statistics, hardware monitoring, fan control,				
BIOS	AMI Aptio® V UEFI 2.x firmware, 32 MB serial SPI with co	ngatec Embedded BIOS features				
Power Management	ACPI 5.0 compliant with battery support. S5e mode (see section 6.4.4 "Enhanced Soft-Off State" Also supports Suspend to RAM (S3) Configurable TDP					
Storage	Optional eMMC 5.1 ²					
Security	Discrete SPI TPM 2.0 (Infineon SLB9670)					

- ^{1.} Variants with optional eDP do not support LVDS
- ^{2.} Not available by default (assembly option)

2.2 Supported Operating Systems

The conga-TCA7 supports the following operating systems

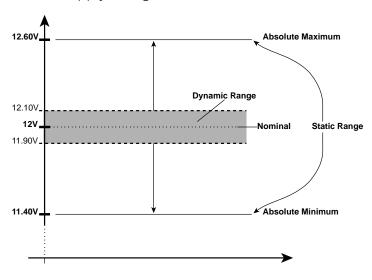
- Microsoft® Windows® 11, 64-bit (from version 22H2 and later)
- Microsoft® Windows® 11 IoT Enterprise, 64-bit (version 22H2 and later)
- Microsoft® Windows® 10, 64-bit (version 22H2 and later)
- Microsoft® Windows® 10 IoT Enterprise, 64-bit (version 22H2 and later)
- Linux Ubuntu (64-bit)
- Yocto (64-bit)
- RTS Hypervisor


- 1. Windows® 10/11, version 21H2 (OS build 19044) may sporadically fail to wake from S3 sleep state (POST code 0300). Therefore, we recommend updating to a newer version of Windows® 10/11.
- 2. The conga-TCA7 supports only native UEFI Operating Systems. Legacy Operating Systems which require CSM (Compatibility Support Module) as part of the UEFI firmware are not supported anymore.
- 3. For Windows 10/11 installation, we recommend a minimum storage capacity of 20 GB. For systems with less than 20 GB storage space, congatec will not offer technical support.

2.3 Mechanical Dimensions

The conga-TCA7 has the following dimensions:

- length of 95 mm
- width of 95 mm


The overall height (module, heatspreader and stack) is shown below:

2.4 Supply Voltage Standard Power

The conga-TCA7 provides a standard supply voltage of 12 V DC \pm 5%.

The dynamic range shall not exceed the static range.

2.4.1 Electrical Characteristics

Power supply pins on the module's connectors limit the amount of input power. The following table provides an overview of the limitations for pinout Type 6 (dual connector, 440 pins).

	Module Pin Current Capability (Ampere)	Nominal Input (Volts)	Input Range (Volts)			Max. Module Input Power (w. derated input) (Watts)	Assumed Conversion Efficiency	Max. Load Power (Watts)
VCC_12V	12	12	11.4-12.6	11.4	+/- 100	137	85%	116
VCC_5V-SBY	2	5	4.75-5.25	4.75	+/- 50	9		
VCC_RTC	0.5	3	2.5-3.3		+/- 20			

2.4.2 Rise Time

The input voltages shall rise from 10% of nominal to 90% of nominal at a minimum slope of 250V/s. The smooth turn-on requires that during the 10% to 90% portion of the rise time, the slope of the turn-on waveform must be positive.

2.5 Power Consumption

The power consumption values were measured with the following setup:

- Input voltage +12 V
- conga-TCA7 COM
- modified congatec carrier board
- conga-TCA7 cooling solution
- Microsoft® Windows® 10 IoT Enterprise

The CPU was stressed to its maximum workload.

Table 5 Measurement Description

The power consumption values were recorded during the following system states:

System State	Description	Comment		
S0: Minimum value	Lowest frequency mode (LFM) with minimum core voltage during desktop idle			
S0: Maximum value	Highest frequency mode (HFM/Turbo Boost)	The CPU was stressed to its maximum frequency.		
S0: Peak value	Highest current spike during the measurement of "S0: Maximum value". This			
	state shows the peak value during runtime.	ensure that sufficient power is supplied during worst case scenarios.		
S3	COM is powered by VCC_5V_SBY			
S5	COM is powered by VCC_5V_SBY			

- 1. The fan and SATA drives were powered externally.
- 2. All other peripherals except the LCD monitor were disconnected before measurement.

Table 6 Power Consumption Values

The table below provides additional information about the conga-TCA7 power consumption. The values are recorded at various operating modes.

Part	Memory	H.W	BIOS	OS	CPU			Current (A)					
No.	Size	Rev.	Rev.	(64 bit)	Variant	Cores	Freq/Turbo (GHz)	S0:Min	S0: Max	S0: Peak	S3	S5	S5e
049300	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6425E	4	2.0 / 3.0	0.35	2.16	2.58	0.24	0.20	0.00095
049301	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6413E	4	1.5 / 3.0	0.37	1.76	2.42	0.24	0.22	0.00095
049302	3x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6211E	2	1.3 / 3.0	0.37	1.21	2.11	0.24	0.22	0.00095
049310	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6425RE	4	1.9 / N.A	0.36	1.33	1.45	0.24	0.22	0.00095
049311	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6414RE	4	1.5 / N.A	0.36	1.06	1.33	0.24	0.22	0.00095
049312	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Atom® x6212RE	2	1.2 / N.A	0.35	0.74	0.98	0.24	0.22	0.00095
049320	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Pentium® J6425	4	2.0 / 3.0	0.37	1.78	2.63	0.32	0.28	0.00095
049321	3 x 4 GB	A.2	TA70r012	Windows 10	Intel® Celeron® J6413	4	1.8 / 3.0	0.41	1.78	2.48	0.32	0.28	0.00095

With fast input voltage rise time, the inrush current may exceed the measured peak current.

2.6 Supply Voltage Battery Power

Table 7 CMOS Battery Power Consumption

RTC @	Voltage	Current		
-10°C	3V DC	1.81 μΑ		
20°C	3V DC	2.26 μΑ		
70°C	3V DC	2.73 μΑ		

- 1. Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- 2. Measure the CMOS battery power consumption in your customer specific application in worst case conditions (for example, during high temperature and high battery voltage).
- 3. Consider also the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec GmbH website at www.congatec.com/support/application-notes.
- 4. Operating the conga-TCA7 without CMOS battery is not supported.

2.7 Environmental Specifications

Temperature (commercial variants)

Operation: 0° to 60°C

Storage: -20° to +80°C

Temperature (industrial variants)

Operation: -40° to 85°C

Storage: -40° to +85°C

Relative Humidity Operation: 10% to 85% Storage: 5% to 85%

Caution

The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.

Humidity specifications are for non-condensing conditions.

2.8 Storage Specifications

This section describes the storage conditions that must be observed for optimal performance of congatec products.

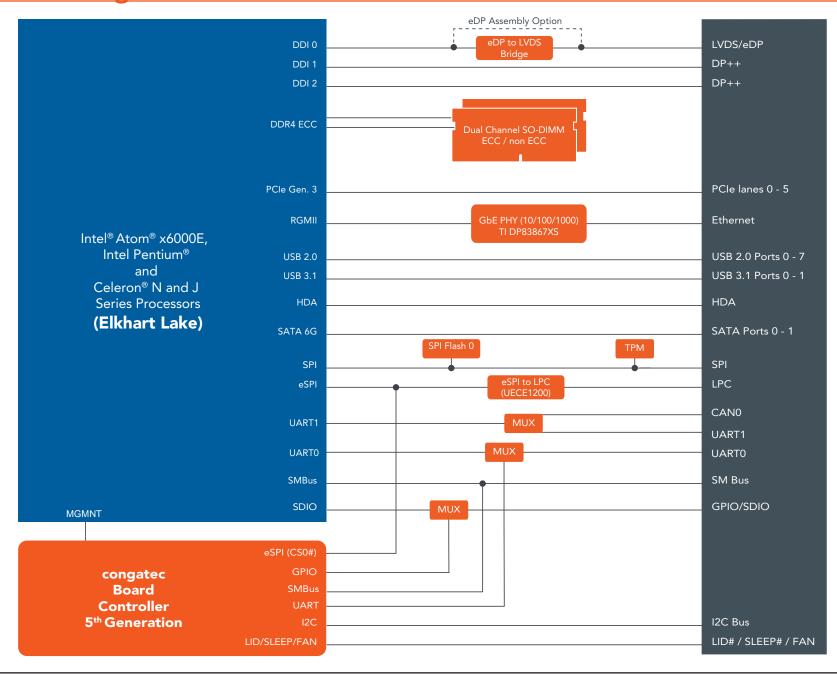
2.8.1 Module

For long-term storage of the conga-TCA7 (more than six months), keep the conga-TCA7 in a climate-controlled building at a constant temperature between 5°C and 40°C, with humidity of less than 65% and at an altitude of less than 3000 m. Also ensure the storage location is dry and well ventilated.

We do not recommend storing the conga-TCA7 for more than five years under these conditions.

2.8.2 Cooling Solution

The heatpipes of congatec heatspreaders/cooling solutions are filled with water by default. For optimal cooling performance, do not store the heatspreaders/cooling solutions at temperatures below -20°C.


Caution

1. For temperatures between -10°C and -20°C, preheat the heatpipes before operation. Optionally, the heatpipes can be filled with acetone instead. For more information, contact your local sales representative.

2. For optimal thermal dissipation, do not store the congatec cooling solutions for more than six months.

3 Block Diagram

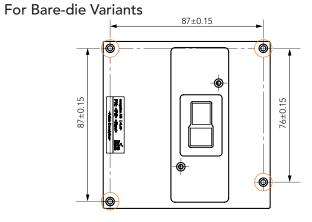
4 Cooling Solutions

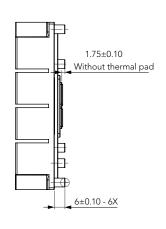
congatec GmbH offers the following cooling solutions for the conga-TCA7. The dimensions of the cooling solutions are shown in the sub-sections. All measurements are in millimeters.

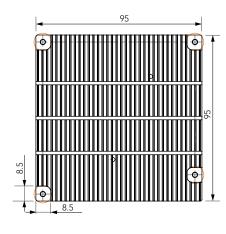
Table 8 Cooling Solution Variants

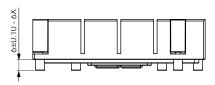
	Cooling Solution	Part No	Description
1 HSP 049350 Heatspreader with 2.7 mm bore-h			Heatspreader with 2.7 mm bore-hole standoffs for lidded Intel Atom CPU variants
		049351	Heatspreader with M2.5 mm threaded standoffs for lidded Intel Atom CPU variants
		049354	Heatspreader with 2.7 mm bore-hole standoffs for bare-die Intel Pentium and Celeron CPU variants
049355 Heatsp		049355	Heatspreader with M2.5 mm threaded standoffs for bare-die Intel Pentium and Celeron CPU variants
2	2 CSP 049352 Passive cooling with 2.7 m		Passive cooling with 2.7 mm bore-hole standoffs for lidded Intel Atom CPU variants
		049353	Passive cooling with M2.5 mm threaded standoffs for lidded Intel Atom CPU variants
		049356	Passive cooling with 2.7 mm bore-hole standoffs for bare-die Intel Pentium and Celeron CPU variants
		049357	Passive cooling with M2.5 mm threaded standoffs for bare-die Intel Pentium and Celeron CPU variants

- 1. We recommend a maximum torque of 0.4 Nm for carrier board mounting screws and 0.5 Nm for module mounting screws.
- 2. The gap pad material used on congatec heatspreaders may contain silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.

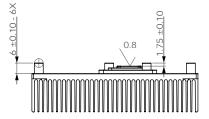


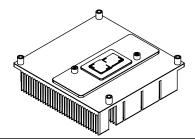

- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.

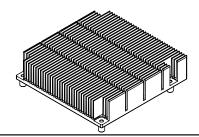


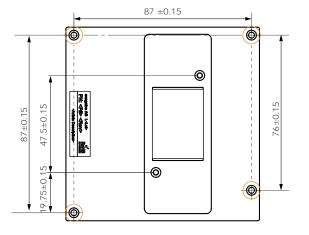

- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.
- 4. Do not exceed the recommended maximum torque. Doing so may damage the module or the carrier board, or both.

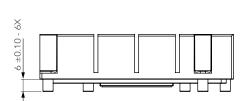
4.1 CSP Dimensions

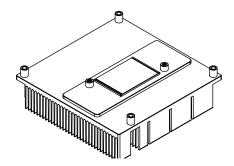


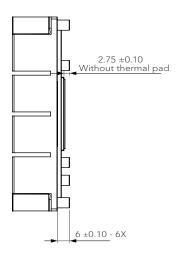




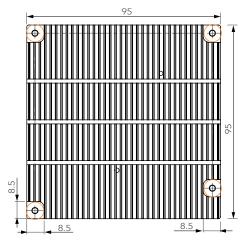


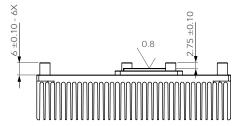


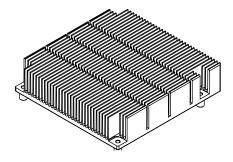


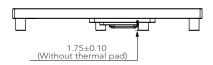


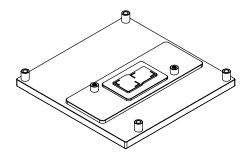
For Lidded Variants

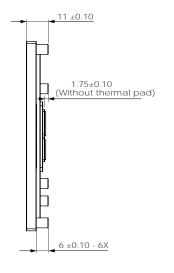


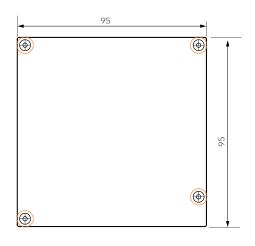


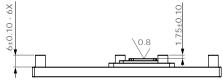


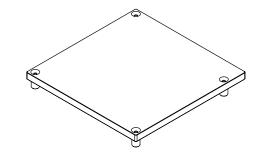


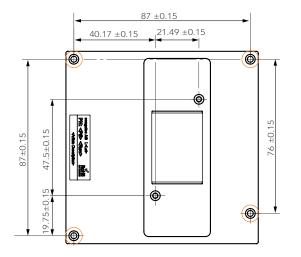


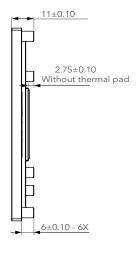

4.2 HSP Dimensions

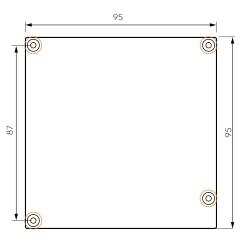

For Bare-die Variants

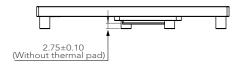


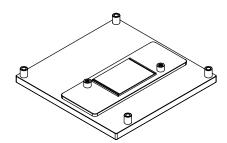


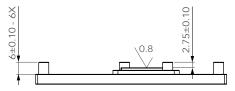


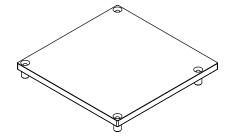







For Lidded Variants





M2.5 x 11 mm threaded standoff for threaded version or Ø2.7 x 11 mm non-threaded standoff for borehole version

5 Connector Rows

The conga-TCA7 is connected to the carrier board via two 220-pin connectors (COM Express Type 6 pinout). These connectors are broken down into four rows. The primary connector consists of rows A and B while the secondary connector consists of rows C and D.

5.1 Primary and Secondary Connector Rows

The following subsystems can be found on the primary and secondary connector rows.

5.1.1 PCI Express™

The conga-TCA7 offers six PCIe lanes on the A–B connector. The lanes support the following:

- up to 8 GT/s (Gen 3) speed
- a 6 x1 link configuration
- a 1 x4 + 2 x1 link, 1 x4 + 1 x2 link, 3 x2 link, 2 x2 + 2 x1 link or 4 x1 + 1 x2 link via a special/customized BIOS firmware 1
- lane reversal

^{1.} Assembly option (not available by default)

5.1.2 Display Interface

The conga-TCA7 offers the following display interfaces:

- two DP++
- VESA DisplayPort Standard 1.4
- VESA embedded DisplayPort Standard 1.3
- single or dual LVDS
- up to three independent displays ¹

^{1.} Default display combinations must be 2 x DP++ and 1 x LVDS/eDP

The table below shows the supported display combinations and resolutions.

Table 9 Display Combinations and Resolutions

		Display 1 (DDI1)		Display 2 (DDI2)		Display 3 (DDI0)			
	Interface	Max. Resolution	Interface	Max. Resolution	Interface	Max. Resolution			
Option 1	DP	4096x2160 @ 60 Hz	DP	4096x2160 @ 60 Hz	LVDS	1920x1200 @ 60 Hz (dual LVDS mode)			
	or		or						
	TMDS	4096x2160 @ 60 Hz	TMDS	4096x2160 @ 60 Hz					
Option 2	DP	4096x2160 @ 60 Hz	DP	4096x2160 @ 60 Hz	eDP (BOM option)	4096x2160 @ 60 Hz			
	or		or						
	TMDS	4096x2160 @ 60 Hz	TMDS	4096x2160 @ 60 Hz					

5.1.2.1 DisplayPort (DP)

The conga-TCA7 offers up to two DP++ ports. The ports support the following:

- VESA DisplayPort Standard 1.4
- up to 4096x2160 at 60 Hz
- maximum of two independent DP displays

5.1.2.2 LVDS

The conga-TCA7 offers an LVDS interface with optional eDP overlay on the A–B connector. The LVDS interface provides LVDS signals by default, but can optionally support eDP signals (assembly option). For more information, contact congatec technical center.

The LVDS interface supports:

- single or dual channel LVDS (color depths of 18 bpp or 24 bpp)
- integrated flat panel interface with clock frequency up to 112 MHz
- VESA and OpenLDI LVDS color mappings
- automatic panel detection via Embedded Panel Interface based on VESA EDID™ 1.3
- resolution up to 1920x1200 in dual LVDS bus mode

The LVDS/eDP interface supports either LVDS or eDP signals. Both signals are not supported simultaneously.

5.1.2.3 Optional eDP

The conga-TCA7 offers an optional eDP interface on the A–B connector. Variants with optional eDP interface do not support LVDS.

5.1.3 SATA

The conga-TCA7 offers two SATA interfaces (SATA 0-1) on the A–B connector. The interfaces support:

- independent DMA operation
- data transfer rates up to 6.0 Gbps
- Serial ATA Specification, revision 3.2
- AHCI mode using memory space
- Hot-plug detect

The interface does not support IDE mode.

5.1.4 USB

The conga-TCA7 offers up to eight USB 2.0 interfaces on the A–B connector and two SuperSpeed differential signals on the C–D connector. The xHCl host controller supports the following:

- USB 3.1 Specification
- SuperSpeedPlus, SuperSpeed, High-Speed, Full-Speed and Low-Speed USB signaling
- data transfers of up to 10 Gbps for USB 3.1 Gen 2 port
- data transfers of up to 5 Gbps for USB 3.1 Gen 1 port
- dual-role support on USB port 0
- USB debug port

- 1. Each SuperSpeed differential signal should be paired with corresponding USB 2.0 differential data pairs on the carrier board.
- 2. The USB ports are configured in BIOS setup menu to operate by default in Gen 1 mode. Before you change the default setting to Gen 2, ensure the carrier board is designed for Gen 2 operation. For Gen 2 design considerations, contact congatec technical support.

5.1.5 Gigabit Ethernet

The conga-TCA7 offers a Gigabit Ethernet interface via an onboard Gigabit Ethernet PHY. The interface supports full-duplex operation at 10/100/1000 Mbps and half-duplex operation at 10/100 Mbps.

- 1. The GBEO_LINK# output is not active during a 10 Mb connection. It is only active during a 100 Mb or 1 Gb connection. This is a limitation of Ethernet Phy since it only has 3 LED outputs—ACT#, LINK100# and LINK1000#.
- 2. The GBE0_LINK# signal is a logic AND of the GBE0_LINK100# and GBE0_LINK1000# signals on the conga-TCA7 module.

5.1.6 Audio (HDA)

The conga-TCA7 provides an interface that supports HDA audio codecs.

5.1.7 SD Card

The conga-TCA7 offers a 4-bit SD interface. The interface supports:

- SD Memory Card Specification 3.01
- SD 3.01 @ 1.8 V or @ 3.3 V signaling
- up to 200 MHz clock frequency
- up to 100 MB/s data rates with four parallel data lines
- card insertion and removal detection

- 1. The SD card interface supports only storage devices.
- 2. If you disable the eMMC 5.1 controller in the BIOS setup menu, the SD card controller will also be automatically disabled.

5.1.8 UART

The conga-TCA7 provides two UART ports:

- SERO via the cBC (default) or the SoC's SIO UART (configurable via the BIOS setup menu) 1
- SER1 via the SoC's PS UART (shared with a CAN bus via a multiplexer) 2,3

- ^{1.} Legacy UART supported in Microsoft Windows and Linux Operating Systems.
- ² Legacy mode is not supported. Therefore, SER1 is not supported in Microsoft Windows Operating System.
- 3. Configured as default in the BIOS setup menu.

5.1.9 CAN Bus

The conga-TCA7 offers a CAN bus (CAN0). The CAN0 port is shared with SER1 port and can be selected via the BIOS setup menu. The port supports the following features:

- ISO 11898-1 (Identical to Bosch CAN protocol specification 2.0 part A, B)
- ISO 11898-4 (Time-triggered communication)
- CAN FD protocol specification 1.0

CAN bus is supported only in Linux and Yocto Operating Systems

5.1.10 GPIOs/SDIO

The conga-TCA7 offers four General Purpose Input signals (GPIs) and four General Purpose Output signals (GPOs) on the A–B connector. The GPIOs are multiplexed with SD signals and are controlled by the cBC.

You can select GPIO or SDIO via the BIOS setup menu.

The conga-TCA7 supports only default bus speed modes and high bus speed modes (3.3 V) for SDIO interface. Faster bus speed modes (1.8 V) are not supported.

5.1.11 LPC Bus

The conga-TCA7 offers the LPC (Low Pin Count) bus on the A–B connector via eSPI to LPC bridge (Microchip ECE1200). For information about the decoded LPC addresses, see section 9 "System Resources".

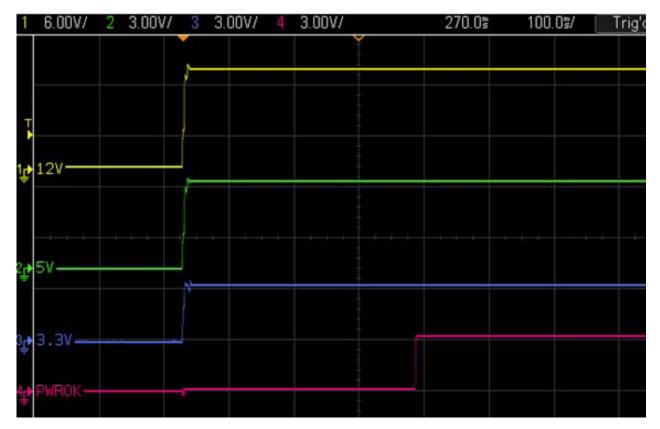
The LPC bus runs at 24 MHz.

5.1.12 I²C Bus

The I²C bus is implemented through the congatec board controller and accessed through the congatec CGOS driver and API. The controller provides a fast-mode multi-master I²C bus that has the maximum I²C bandwidth.

5.1.13 SPI

The conga-TCA7 supports SPI interface. This interface makes it possible to boot from an external SPI flash (alternative interface for the BIOS flash device).


5.1.14 Power Control

PWR_OK

Power OK from main power supply or carrier board voltage regulator circuitry. A high value indicates that the power is good and the module can start its onboard power sequencing.

Carrier board hardware must drive this signal low until all power rails and clocks are stable. Releasing PWR_OK too early or not driving it low at all can cause numerous boot up problems. It is a good design practice to delay the PWR_OK signal a little (typically 100ms) after all carrier board power rails are up, to ensure a stable system.

A sample screenshot is shown below:

The module is kept in reset as long as the PWR_OK is driven by carrier board hardware.

The conga-TCA7 supports the controlling of ATX-style power supplies. If you do not use an ATX power supply, do not connect the conga-TCA7 pins SUS_S3/PS_ON, 5V_SB, and PWRBTN# on the conga-TCA7.

SUS S3#/PS ON#

The SUS_S3#/PS_ON# (pin A15 on the A-B connector) signal is an active-low output that can be used to turn on the main outputs of an ATX-style power supply. In order to accomplish this the signal must be inverted with an inverter/transistor that is supplied by standby voltage and is located on the carrier board.

PWRBTN#

When using ATX-style power supplies PWRBTN# (pin B12 on the A-B connector) is used to connect to a momentary-contact, active-low debounced push-button input while the other terminal on the push-button must be connected to ground. This signal is internally pulled up to 3V_SB using a 10k resistor. When PWRBTN# is asserted it indicates that an operator wants to turn the power on or off. The response to this signal from the system may vary as a result of modifications made in BIOS settings or by system software.

Power Supply Implementation Guidelines

The 12 V input power is the sole operational power source for the conga-TCA7. Other required voltages are generated internally on the module using onboard voltage regulators.

When designing a power supply for a conga-TC570 application, be aware that the system may malfunction when a 12 V power supply that produces non-monotonic voltage is used to power the system up. Though this problem is rare, it has been observed in some mobile power supply applications.

This problem occurs because some internal circuits on the module (e.g. clock-generator chips) generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused, thereby resulting in a malfunction.

To ensure this problem does not occur, observe the power supply rise waveform through an oscilloscope, during the power supply qualication phase. This will help to determine if the rise is indeed monotonic and does not have any dips. For more information, see the "Power Supply Design Guide for Desktop Platform Form Factors" document at www.intel.com

5.1.15 Power Management

ACPI 5.0 compliant with battery support. Also supports Suspend to RAM (S3).

6 Additional Features

The following additional features are available on the conga-TCA7.

6.1 Integrated Real-Time Hypervisor

The RTS Hypervisor is integrated into the congatec firmware on the conga-TCA7 by default. With the RTS Hypervisor, you can consolidate functionality that previously required multiple dedicated systems on a single x86 hardware platform.

The integrated RTS Hypervisor offers a 30-day free evaluation license. The 30-day evaluation starts when the customer receives the x86-based modules. To access the full package, contact congatec Sales team via the online "Request Quote" button for your particular product at https://www.congatec.com/en/products/hypervisor-products/.

To activate the RTS Hypervisor, change the "Boot Device" in the BIOS setup menu to "Integrated RTS Hypervisor".

- 1. Press F2 or DEL during POST to enter the BIOS setup menu.
- 2. Go to the Boot tab to enter the Boot setup screen.
- 3. Select "Integrated RTS Hypervisor" as "1st Boot Device".
- 4. Go to the Save & Exit tab and select "Save Changes and Exit".

For more information about the integrated Hypervisor, see the congatec Application Note AN56_Hypervisor_on_Module.pdf on the congatec website at https://www.congatec.com/en/support/application-notes/.

Note

- 1. The configuration steps and the BIOS setup menu above are valid for "Type Based Boot Priority". For "UEFI Boot Priority", the BIOS setup menu may differ.
- 2. The Real-Time Operating System images, driver packages for the General-Purpose Operating System and the installation procedures for the Operating Systems are available for download under the "Technical information" section, in the restricted area of congatec website at www.congatec.com/login. If you require login access, contact your local sales representative.

6.2 eMMC

The conga-TCA7 offers an optional eMMC 5.0 flash onboard. Changes to the onboard eMMC may occur during the lifespan of the module in order to keep up with the rapidly changing eMMC technology.

The performance of the newer eMMC may vary depending on the eMMC technology.

- 1. For adequate operation of the eMMC, ensure that at least 15 % of the eMMC storage is reserved for vendor-specific functions.
- 2. If you disable the eMMC 5.1 controller in the BIOS setup menu, the SD card controller will also be automatically disabled.

6.3 TPM

The conga-TCA7 offers an integrated discrete SPI TPM 2.0 (Infineon SLB9670).

6.4 congatec Board Controller (cBC)

The conga-TCA7 is equipped with Microchip microcontroller. This onboard microcontroller plays an important role for most of the congatec embedded/industrial PC features. By isolating some of the embedded features such as system monitoring or the I²C bus from the x86 core architecture, the microcontroller increases the performance and reliability of the BIOS features, even during low power mode. In addition, it ensures the congatec embedded feature set is compatible amongst all congatec modules.

Some of the features offered by the cBC are described below:

- Board information
- General Purpose Input/Output (see section 5.1.10 "GPIOs/SDIO")
- I²C (see section 5.1.12 "I²C Bus")
- Fan control
- Watchdog
- Enhanced Soft-Off state
- Power loss control

6.4.1 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions, and so on. It also keeps track of dynamically changing data like runtime meter and boot counter.

6.4.2 Fan Control

The conga-TCA7 uses FAN_PWMOUT output signal and FAN_TACHOIN input signal for fan control, thereby improving system management. The FAN_PWMOUT signal controls the system fan with PWM (Pulse Width Modulation) while the FAN_TACHOIN signal provides the ability to monitor the system's fan RPMs (revolutions per minute).

The FAN_TACHOIN signal must receive two pulses per revolution in order to produce an accurate reading. For this reason, a two-pulse per revolution fan or similar hardware solution is recommended.

- 1. Use a four-wire fan to generate the correct speed readout.
- 2. For the correct fan control (FAN_PWMOUT, FAN_TACHIN) implementation, see the COM Express Design Guide.

6.4.3 Watchdog

The conga-TCA7 is equipped with a multi stage watchdog solution that is triggered by software. The conga-TCA7 does not support external hardware triggering because the COM Express™ Specification does not provide support for external hardware triggering of the Watchdog.

For more information, see the application note AN3_Watchdog.pdf on the congatec GmbH website at www.congatec.com.

The conga-TCA7 module does not support the watchdog NMI mode.

6.4.4 Enhanced Soft-Off State

The conga-TCA7 supports an enhanced Soft-Off state (S5e)—a congatec proprietary low-power Soft-Off state. In this state, the CPU module switches off almost all the onboard logic in order to reduce the power consumption to absolute minimum (usually 1 mA or lower).

The S5e supports power button, sleep button and SMBALERT# wake events. Refer to congatec application note AN36_S5e_Implementation.pdf for detailed description of the S5e state.

6.4.5 Power Loss Control

The cBC provides the power loss control feature. The power loss control feature determines the behaviour of the system after an AC power loss occurs. This feature applies to systems with ATX-style power supplies which support standby power rail.

The term "power loss" implies that all power sources, including the standby power are lost (G3 state). Once power loss (transition to G3) or shutdown (transition to S5) occurs, the board controller continuously monitors the standby power rail. If the standby voltage remains stable for 30 seconds, the cBC assumes the system was switched off properly. If the standby voltage is no longer detected within 30 seconds, the module considers this an AC power loss condition.

The power loss control feature has three different modes that define how the system responds when standby power is restored after a power loss occurs. The modes are:

- Turn On: The system is turned on after a power loss condition
- Remain Off: The system is kept off after a power loss condition
- Last State: The board controller restores the last state of the system before the power loss condition

- 1. If a power loss condition occurs within 30 seconds after a regular shutdown, the cBC may incorrectly set the last state to "ON".
- 2. The settings for power loss control have no effect on systems with AT-style power supplies which do not support standby power rail.
- 3. The 30 seconds monitoring cycle applies only to the "Last State" power loss control mode.

6.5 OEM BIOS Customization

The conga-TCA7 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customization features supported are described below.

6.5.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_OEM_Default_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

6.5.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_And_Add_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.

6.5.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace/add the OEM POST logo.

6.5.4 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OEM DXE driver.

6.6 congatec Battery Management Interface

To facilitate the development of battery powered mobile systems based on embedded modules, congatec GmbH defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congatec Battery Management Interface Specification can provide the battery management functions supported by an ACPI capable operating system (for example, charge state of the battery, information about the battery, alarms/events for certain battery states and so on) without the need for any additional modifications to the system BIOS.

In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-TCA7 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I²C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system. For more information about the supported Battery Management Interface, contact your local sales representative.

6.7 API Support (CGOS)

To benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win32, Win64, Win CE, Linux.

The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, which is available on the congatec website.

6.8 Suspend to Ram

The Suspend to RAM feature is available on the conga-TCA7.

7 conga Tech Notes

The conga-TCA7 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features.

7.1 Intel® Elkhart Lake SoC Features

7.1.1 Processor Core

The SoC features Dual or Quad 3-way Supersclar, Out-of-Order Execution processor cores. Some of the features supported by the core are:

- Intel® 64 architecture
- Intel® Streaming SIMD Extensions
- Intel® VTx-2 and VT-d Virtualization Technology
- Thermal management support vial Intel® Thermal Monitor
- Programmable Service Engine Interrupt Routing
- 10 nm process technology

Intel Hyper-Threading technology is not supported (four cores execute four threads)

7.1.1.1 Intel Virtualization Technology

Intel® Virtualization Technology (Intel® VT) makes a single system appear as multiple independent systems to software. With this technology, multiple, independent operating systems can run simultaneously on a single system. The technology components support virtualization of platforms based on Intel architecture microprocessors and chipsets. Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) added hardware support in the processor to improve the virtualization performance and robustness.

RTS Real-Time Hypervisor supports Intel® VT and is verified on all current congatec x86 hardware.

congatec supports RTS Hypervisor.

7.1.1.2 Thermal Management

ACPI is responsible for allowing the operating system to play an important part in the system's thermal management. This results in the operating system having the ability to take control of the operating environment by implementing cooling decisions according to the demands put on the CPU by the application.

The conga-TCA7 ACPI thermal solution offers two different cooling policies.

Passive Cooling

When the temperature in the thermal zone must be reduced, the operating system can decrease the power consumption of the processor by throttling the processor clock. One of the advantages of this cooling policy is that passive cooling devices (in this case the processor) do not produce any noise. Use the "passive cooling trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to start or stop the passive cooling procedure.

Critical Trip Point

If the temperature in the thermal zone reaches a critical point then the operating system will perform a system shut down in an orderly fashion in order to ensure that there is no damage done to the system as result of high temperatures. Use the "critical trip point" setup node in the BIOS setup program to determine the temperature threshold that the operating system will use to shut down the system.

The end user must determine the cooling preferences for the system by using the setup nodes in the BIOS setup program to establish the appropriate trip points.

If passive cooling is activated and the processor temperature is above the trip point the processor clock is throttled. See section 12 of the ACPI Specification 2.0 C for more information about passive cooling.

7.2 ACPI Suspend Modes and Resume Events

The conga-TCA7 BIOS supports S3 (Suspend to RAM). The BIOS does not support S4 (Suspend to Disk).

Table 10 Wake Events

The table below lists the events that wake the system from S3.

Wake Event	Conditions/Remarks
Power Button	Wakes unconditionally from S3-S5.
Onboard LAN Event	Device driver must be configured for Wake On LAN support.
SMBALERT#	Wakes unconditionally from S3-S5.
PCI Express WAKE#	Wakes unconditionally from S3-S5.
WAKE#	Wakes unconditionally from S3.
PME#	Activate the wake up capabilities of a PCI device using Windows Device Manager configuration options for this device OR set Resume On PME# to Enabled in the Power setup menu.
USB Mouse/Keyboard Event	When Standby mode is set to S3, USB hardware must be powered by standby power source. Set USB Device Wakeup from S3/S4 to ENABLED in the ACPI setup menu (if setup node is available in BIOS setup program). In Device Manager look for the keyboard/mouse devices. Go to the Power Management tab and check 'Allow this device to bring the computer out of standby'.
RTC Alarm	Activate and configure Resume On RTC Alarm in the Power setup menu. Only available in S5.
Watchdog Power Button Event	Wakes unconditionally from S3-S5.

8 Signal Descriptions and Pinout Tables

The following section describes the signals found on COM Express™ Type 6 connectors used for congatec GmbH modules. The pinout of the modules complies with COM Express Type 6 Rev. 3.0.

The table below describes the terminology used in this section. The PU/PD column indicates if a COM Express™ module pull-up or pull-down resistor has been used. If the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented by congatec.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

The signal description tables do not list internal pull-ups or pull-downs implemented by the chip vendors. Only pull-ups or pull-downs implemented by congatec are listed. For information about the internal pull-ups or pull-downs implemented by the chip vendors, refer to the respective chip's datasheet.

Table 11 Signal Tables Terminology Descriptions

Term	Description
PU	congatec implemented pull-up resistor
PD	congatec implemented pull-down resistor
I/O 3.3V	Bi-directional signal 3.3V tolerant
I/O 5V	Bi-directional signal 5V tolerant
I 3.3V	Input 3.3V tolerant
I 5V	Input 5V tolerant
I/O 3.3VSB	Input 3.3V tolerant active in standby state
O 3.3V	Output 3.3V signal level
O 5V	Output 5V signal level
OD	Open drain output
Р	Power Input/Output
DDC	Display Data Channel
PCIE	In compliance with PCI Express Base Specification, Revision 1.0a
SATA	In compliance with Serial ATA specification, Revision 3.0
REF	Reference voltage output. May be sourced from a module power plane
PDS	Pull-down strap. A module output pin that is either tied to GND or is not connected. Used to signal module capabilities (pinout type) to the Carrier Board.

8.1 Connector Signal Descriptions

Table 12 Connector A–B Pinout

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A1	GND (FIXED)	B1	GND (FIXED)	A56	PCIE_TX4-	B56	PCIE_RX4-
A2	GBE0_MDI3-	B2	GBE0_ACT#	A57	GND	B57	GPO2
А3	GBE0_MDI3+	В3	LPC_FRAME#/ESPI_CS0#	A58	PCIE_TX3+	B58	PCIE_RX3+
A4	GBE0_LINK100#	В4	LPC_AD0/ESPI_IO_0	A59	PCIE_TX3-	B59	PCIE_RX3-
A5	GBE0_LINK1000#	B5	LPC_AD1/ESPI_IO_1	A60	GND (FIXED)	B60	GND (FIXED)
A6	GBE0_MDI2-	В6	LPC_AD2/ESPI_IO_2	A61	PCIE_TX2+	B61	PCIE_RX2+
A7	GBE0_MDI2+	В7	LPC_AD3/ESPI_IO_3	A62	PCIE_TX2-	B62	PCIE_RX2-
A8	GBE0_LINK#	В8	LPC_DRQ0#/ESPI_ALERT0# ²	A63	GPI1	B63	GPO3
A9	GBE0_MDI1-	В9	LPC_DRQ1#/ESPI_ALERT1# ²	A64	PCIE_TX1+	B64	PCIE_RX1+
A10	GBE0_MDI1+	B10	LPC_CLK/ESPI_CK	A65	PCIE_TX1-	B65	PCIE_RX1-
A11	GND (FIXED)	B11	GND (FIXED)	A66	GND	B66	WAKE0#
A12	GBE0_MDI0-	B12	PWRBTN#	A67	GPI2	B67	WAKE1#
A13	GBE0_MDI0+	B13	SMB_CK	A68	PCIE_TX0+	B68	PCIE_RX0+
A14	GBE0_CTREF ¹	B14	SMB_DAT	A69	PCIE_TX0-	B69	PCIE_RX0-
A15	SUS_S3#	B15	SMB_ALERT#	A70	GND (FIXED)	B70	GND (FIXED)
A16	SATA0_TX+	B16	SATA1_TX+	A71	eDP_TX2+/LVDS_A0+	B71	LVDS_B0+
A17	SATA0_TX-	B17	SATA1_TX-	A72	eDP_TX2-/LVDS_A0-	B72	LVDS_B0-
A18	SUS_S4#	B18	SUS_STAT#/ESPI_RESET#	A73	eDP_TX1+/LVDS_A1+	B73	LVDS_B1+
A19	SATA0_RX+	B19	SATA1_RX+	A74	eDP_TX1-/LVDS_A1-	B74	LVDS_B1-
A20	SATA0_RX-	B20	SATA1_RX-	A75	eDP_TX0+/LVDS_A2+	B75	LVDS_B2+
A21	GND (FIXED)	B21	GND (FIXED)	A76	eDP_TX0-/LVDS_A2-	B76	LVDS_B2-
A22	SATA2_TX+ 1	B22	SATA3_TX+ 1	A77	eDP_VDD_EN/LVDS_VDD_EN	B77	LVDS_B3+
A23	SATA2_TX- 1	B23	SATA3_TX- 1	A78	LVDS_A3+	B78	LVDS_B3-
A24	SUS_S5#	B24	PWR_OK	A79	LVDS_A3-	B79	eDP_BKLT_EN/LVDS_BKLT_EN
A25	SATA2_RX+ 1	B25	SATA3_RX+ 1	A80	GND (FIXED)	B80	GND (FIXED)
A26	SATA2_RX-1	B26	SATA3_RX- ¹	A81	eDP_TX3+/LVDS_A_CK+	B81	LVDS_B_CK+
A27	BATLOW#	B27	WDT	A82	eDP_TX3-/LVDS_A_CK-	B82	LVDS_B_CK-
A28	(S)ATA_ACT#	B28	HDA_SDIN2 ¹	A83	eDP_AUX+/LVDS_I2C_CK	B83	eDP/LVDS_BKLT_CTRL
A29	HDA_SYNC	B29	HDA_SDIN1	A84	eDP_AUX-/LVDS_I2C_DAT	B84	VCC_5V_SBY
A30	HDA_RST#	B30	HDA_SDIN0	A85	GPI3	B85	VCC_5V_SBY

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A31	GND (FIXED)	B31	GND (FIXED)	A86	RSVD	B86	VCC_5V_SBY
A32	HDA_BITCLK	B32	SPKR ³	A87	eDP_HPD	B87	VCC_5V_SBY
A33	HDA_SDOUT ³	B33	I2C_CK	A88	PCIE_CLK_REF+	B88	BIOS_DIS1# ³
A34	BIOS_DIS0# ³/ESPI_SAFS	B34	I2C_DAT	A89	PCIE_CLK_REF-	B89	VGA_RED ¹
A35	THRMTRIP#	B35	THRM#	A90	GND (FIXED)	B90	GND (FIXED)
A36	USB6-	B36	USB7-	A91	SPI_POWER	B91	VGA_GRN ¹
A37	USB6+	B37	USB7+	A92	SPI_MISO	B92	VGA_BLU ¹
A38	USB_6_7_OC#	B38	USB_4_5_OC#	A93	GPO0	B93	VGA_HSYNC ¹
A39	USB4-	B39	USB5-	A94	SPI_CLK	B94	VGA_VSYNC ¹
A40	USB4+	B40	USB5+	A95	SPI_MOSI ³	B95	VGA_I2C_CK ¹
A41	GND (FIXED)	B41	GND (FIXED)	A96	TPM_PP	B96	VGA_I2C_DAT ¹
A42	USB2-	B42	USB3-	A97	TYPE10# 1	B97	SPI_CS#
A43	USB2+	B43	USB3+	A98	SERO_TX	B98	RSVD ¹
A44	USB_2_3_OC#	B44	USB_0_1_OC#	A99	SERO_RX	B99	RSVD ¹
A45	USB0-	B45	USB1-	A100	GND (FIXED)	B100	GND (FIXED)
A46	USB0+	B46	USB1+	A101	SER1_TX	B101	FAN_PWMOUT
A47	VCC_RTC	B47	ESPI_EN# ²	A102	SER1_RX	B102	FAN_TACHIN
A48	RSVD ¹	B48	USB0_HOST_PRSNT ²	A103	LID#	B103	SLEEP#
A49	GBE0_SDP	B49	SYS_RESET#	A104	VCC_12V	B104	VCC_12V
A50	LPC_SERIRQ/ESPI_CS1#	B50	CB_RESET#	A105	VCC_12V	B105	VCC_12V
A51	GND (FIXED)	B51	GND (FIXED)	A106	VCC_12V	B106	VCC_12V
A52	PCIE_TX5+	B52	PCIE_RX5+	A107	VCC_12V	B107	VCC_12V
A53	PCIE_TX5-	B53	PCIE_RX5-	A108	VCC_12V	B108	VCC_12V
A54	GPI0	B54	GPO1	A109	VCC_12V	B109	VCC_12V
A55	PCIE_TX4+	B55	PCIE_RX4+	A110	GND (FIXED)	B110	GND (FIXED)

- ^{1.} Not connected
- 2. Not supported
- ^{3.} Bootstrap signals

Table 13 Connector C–D Pinout

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C1	GND (FIXED)	D1	GND (FIXED)	C56	PEG_RX1-1	D56	PEG_TX1- 1
C2	GND	D2	GND	C57	TYPE1# ¹	D57	TYPE2#
C3	USB_SSRX0-	D3	USB_SSTX0-	C58	PEG_RX2+ 1	D58	PEG_TX2+ 1
C4	USB_SSRX0+	D4	USB_SSTX0+	C59	PEG_RX2-1	D59	PEG_TX2- ¹
C5	GND	D5	GND	C60	GND (FIXED)	D60	GND (FIXED)
C6	USB_SSRX1-	D6	USB_SSTX1-	C61	PEG_RX3+ 1	D61	PEG_TX3+ 1
C7	USB_SSRX1+	D7	USB_SSTX1+	C62	PEG_RX3-1	D62	PEG_TX3- 1
C8	GND	D8	GND	C63	RSVD	D63	RSVD ¹
C9	USB_SSRX2- 1	D9	USB_SSTX2- 1	C64	RSVD (see caution below)	D64	RSVD ¹
C10	USB_SSRX2+ 1	D10	USB_SSTX2+ 1	C65	PEG_RX4+ 1	D65	PEG_TX4+ 1
C11	GND (FIXED)	D11	GND (FIXED)	C66	PEG_RX4-1	D66	PEG_TX4- 1
C12	USB_SSRX3-1	D12	USB_SSTX3-1	C67	RAPID_SHUTDOWN 1,2	D67	GND
C13	USB_SSRX3+ 1	D13	USB_SSTX3+ 1	C68	PEG_RX5+ 1	D68	PEG_TX5+ 1
C14	GND	D14	GND	C69	PEG_RX5-1	D69	PEG_TX5- 1
C15	DDI1_PAIR6+ 1	D15	DDI1_CTRLCLK_AUX+	C70	GND (FIXED)	D70	GND (FIXED)
C16	DDI1_PAIR6- 1	D16	DDI1_CTRLDATA_AUX- 3	C71	PEG_RX6+ 1	D71	PEG_TX6+ 1
C17	RSVD ¹	D17	RSVD ¹	C72	PEG_RX6-1	D72	PEG_TX6- 1
C18	RSVD ¹	D18	RSVD ¹	C73	GND	D73	GND
C19	PCIE_RX6+ 1	D19	PCIE_TX6+ 1	C74	PEG_RX7+ 1	D74	PEG_TX7+ 1
C20	PCIE_RX6- 1	D20	PCIE_TX6- 1	C75	PEG_RX7-1	D75	PEG_TX7- 1
C21	GND (FIXED)	D21	GND (FIXED)	C76	GND	D76	GND
C22	PCIE_RX7+ 1	D22	PCIE_TX7+ 1	C77	RSVD ¹	D77	RSVD ¹
C23	PCIE_RX7-1	D23	PCIE_TX7- 1	C78	PEG_RX8+ 1	D78	PEG_TX8+ 1
C24	DDI1_HPD	D24	RSVD ¹	C79	PEG_RX8-1	D79	PEG_TX8- 1
C25	DDI1_PAIR4+ 1	D25	RSVD ¹	C80	GND (FIXED)	D80	GND (FIXED)
C26	DDI1_PAIR4- 1	D26	DDI1_PAIR0+	C81	PEG_RX9+ 1	D81	PEG_TX9+ 1
C27	RSVD ¹	D27	DDI1_PAIR0-	C82	PEG_RX9-1	D82	PEG_TX9- 1
C28	RSVD ¹	D28	RSVD ¹	C83	RSVD ¹	D83	RSVD ¹
C29	DDI1_PAIR5+ 1	D29	DDI1_PAIR1+	C84	GND	D84	GND
C30	DDI1_PAIR5- 1	D30	DDI1_PAIR1-	C85	PEG_RX10+ 1	D85	PEG_TX10+ 1
C31	GND (FIXED)	D31	GND (FIXED)	C86	PEG_RX10-1	D86	PEG_TX10-1
C32	DDI2_CTRLCLK_AUX+	D32	DDI1_PAIR2+	C87	GND	D87	GND

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C33	DDI2_CTRLDATA_AUX-	D33	DDI1_PAIR2-	C88	PEG_RX11+ 1	D88	PEG_TX11+ 1
C34	DDI2_DDC_AUX_SEL	D34	DDI1_DDC_AUX_SEL	C89	PEG_RX11-1	D89	PEG_TX11- 1
C35	RSVD ¹	D35	RSVD ¹	C90	GND (FIXED)	D90	GND (FIXED)
C36	DDI3_CTRLCLK_AUX+ 1	D36	DDI1_PAIR3+	C91	PEG_RX12+ 1	D91	PEG_TX12+ 1
C37	DDI3_CTRLDATA_AUX- 1	D37	DDI1_PAIR3-	C92	PEG_RX12- 1	D92	PEG_TX12- 1
C38	DDI3_DDC_AUX_SEL 1	D38	RSVD ¹	C93	GND	D93	GND
C39	DDI3_PAIR0+ 1	D39	DDI2_PAIR0+	C94	PEG_RX13+ 1	D94	PEG_TX13+ 1
C40	DDI3_PAIR0- 1	D40	DDI2_PAIR0-	C95	PEG_RX13-1	D95	PEG_TX13- 1
C41	GND (FIXED)	D41	GND (FIXED)	C96	GND	D96	GND
C42	DDI3_PAIR1+ 1	D42	DDI2_PAIR1+	C97	RVSD ¹	D97	RSVD ¹
C43	DDI3_PAIR1- 1	D43	DDI2_PAIR1-	C98	PEG_RX14+ 1	D98	PEG_TX14+ 1
C44	DDI3_HPD ¹	D44	DDI2_HPD	C99	PEG_RX14-1	D99	PEG_TX14- 1
C45	RSVD ¹	D45	RSVD ¹	C100	GND (FIXED)	D100	GND (FIXED)
C46	DDI3_PAIR2+ 1	D46	DDI2_PAIR2+	C101	PEG_RX15+ 1	D101	PEG_TX15+ 1
C47	DDI3_PAIR2- 1	D47	DDI2_PAIR2-	C102	PEG_RX15-1	D102	PEG_TX15- 1
C48	RSVD ¹	D48	RSVD ¹	C103	GND	D103	GND
C49	DDI3_PAIR3+ 1	D49	DDI2_PAIR3+	C104	VCC_12V	D104	VCC_12V
C50	DDI3_PAIR3- 1	D50	DDI2_PAIR3-	C105	VCC_12V	D105	VCC_12V
C51	GND (FIXED)	D51	GND (FIXED)	C106	VCC_12V	D106	VCC_12V
C52	PEG_RX0+ 1	D52	PEG_TX0+ 1	C107	VCC_12V	D107	VCC_12V
C53	PEG_RX0- 1	D53	PEG_TX0-1	C108	VCC_12V	D108	VCC_12V
C54	TYPE0# ¹	D54	PEG_LANE_RV# 1	C109	VCC_12V	D109	VCC_12V
C55	PEG_RX1+ 1	D55	PEG_TX1+ 1	C110	GND (FIXED)	D110	GND (FIXED)

- 1. Not connected
- 2. Not supported

Using the conga-TA7 on a COM Express 3.1 carrier board may cause functionality issues. Pin C64 (defined as RSVD in COM Express 3.0) is used for cBC diagnostic output. This pin is defined as GND in COM Express 3.1 specification.

Table 14 PCI Express Signal Descriptions (General Purpose)

Signal	Pin	Description	I/O	PU/PD	Comment
PCIE_RX0+ PCIE_RX0-	B68 B69	PCI Express channel 0, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX0+ PCIE_TX0-	A68 A69	PCI Express channel 0, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX1+ PCIE_RX1-	B64 B65	PCI Express channel 1, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX1+ PCIE_TX1-	A64 A65	PCI Express channel 1, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX2+ PCIE_RX2-	B61 B62	PCI Express channel 2, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX2+ PCIE_TX2-	A61 A62	PCI Express channel 2, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX3+ PCIE_RX3-	B58 B59	PCI Express channel 3, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX3+ PCIE_TX3-	A58 A59	PCI Express channel 3, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX4+ PCIE_RX4-	B55 B56	PCI Express channel 4, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX4+ PCIE_TX4-	A55 A56	PCI Express channel 4, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX5+ PCIE_RX5-	B52 B53	PCI Express channel 5, Receive Input differential pair	I PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_TX5+ PCIE_TX5-	A52 A53	PCI Express channel 5, Transmit Output differential pair	O PCIE		Supports PCI Express Base Specification, Revision 3.0
PCIE_RX6+ PCIE_RX6-	C19 C20	PCI Express channel 6, Receive Input differential pair	I PCIE		Not supported
PCIE_TX6+ PCIE_TX6-	D19 D20	PCI Express channel 6, Transmit Output differential pair	O PCIE		Not supported
PCIE_RX7+ PCIE_RX7-	C22 C23	PCI Express channel 7, Receive Input differential pair	I PCIE		Not supported
PCIE_TX7+ PCIE_TX7-	D22 D23	PCI Express channel 7, Transmit Output differential pair	O PCIE		Not supported
PCIE_CLK_REF+ PCIE_CLK_REF-	A88 A89	PCI Express Reference Clock output for all PCI Express and PCI Express Graphics Lanes	O PCIE		A PCI Express Gen2/3 compliant clock buffer chip must be used on the carrier board if the design involves more than one PCI Express device.

Table 15 PCI Express Signal Descriptions (x16 Graphics)

Signal	Pin	Description	I/O	PU/PD	Comment
PEG_RX0+	C52	PCI Express Graphics Receive Input differential pairs	I PCIE		Not supported
PEG_RX0-	C53				
PEG_RX1+	C55	Note: Can also be used as PCI Express Receive Input differential pairs 16 through 31 known			
PEG_RX1-	C56	as PCIE_RX[16-31] + and -			
PEG_RX2+	C58				
PEG_RX2-	C59				
PEG_RX3+	C61				
PEG_RX3-	C62				
PEG_RX4+	C65				
PEG_RX4-	C66				
PEG_RX5+	C68				
PEG_RX5-	C69				
PEG_RX6+	C71				
PEG_RX6-	C72				
PEG_RX7+	C74				
PEG_RX7-	C75				
PEG_RX8+	C78				
PEG_RX8-	C79				
PEG_RX9+	C81				
PEG_RX9-	C82				
PEG_RX10+	C85				
PEG_RX10-	C86				
PEG_RX11+	C88				
PEG_RX11-	C89				
PEG_RX12+	C91				
PEG_RX12-	C92				
PEG_RX13+	C94				
PEG_RX13-	C95				
PEG_RX14+	C98				
PEG_RX14-	C99				
PEG_RX15+	C101				
PEG_RX15-	C102				

Signal	Pin	Description	I/O	PU/PD	Comment
PEG_TX0+	D52	PCI Express Graphics Transmit Output differential pairs	O PCIE		Not supported
PEG_TX0-	D53				
PEG_TX1+	D55	Note: Can also be used as PCI Express Transmit Output differential pairs 16 through 31			
PEG_TX1-	D56	known as PCIE_TX[16-31] + and -			
PEG_TX2+	D58				
PEG_TX2-	D59				
PEG_TX3+	D61				
PEG_TX3-	D62				
PEG_TX4+	D65				
PEG_TX4-	D66				
PEG_TX5+	D68				
PEG_TX5-	D69				
PEG_TX6+	D71				
PEG_TX6-	D72				
PEG_TX7+	D74				
PEG_TX7-	D75				
PEG_TX8+	D78				
PEG_TX8-	D79				
PEG_TX9+	D81				
PEG_TX9-	D82				
PEG_TX10+	D85				
PEG_TX10-	D86				
PEG_TX11+	D88				
PEG_TX11-	D89				
PEG_TX12+	D91				
PEG_TX12-	D92				
PEG_TX13+	D94				
PEG_TX13-	D95				
PEG_TX14+	D98				
PEG_TX14-	D99				
PEG_TX15+	D101				
PEG_TX15-	D102				
PEG_LANE_RV#	D54	PCI Express Graphics lane reversal input strap. Pull low on the carrier board to reverse lane	1		Not supported
		order			

The conga-TCA7 does not support PCI Express Graphics.

Table 16 DDI Signal Description

Signal	Pin	Description	I/O	PU/PD	Comment
DDI1_PAIR0+	D26	Multiplexed with DP1_LANE0+ and TMDS1_DATA2+	O DP		
DDI1_PAIR0-	D27	Multiplexed with DP1_LANE0- and TMDS1_DATA2-			
DDI1_PAIR1+	D29	Multiplexed with DP1_LANE1+ and TMDS1_DATA1+	O DP		
DDI1_PAIR1-	D30	Multiplexed with DP1_LANE1- and TMDS1_DATA1-			
DDI1_PAIR2+	D32	Multiplexed with DP1_LANE2+ and TMDS1_DATA0+	O DP		
DDI1_PAIR2-	D33	Multiplexed with DP1_LANE2- and TMDS1_DATA0-			
DDI1_PAIR3+	D36	Multiplexed with DP1_LANE3+ and TMDS1_CLK+	O DP		
DDI1_PAIR3-	D37	Multiplexed with DP1_LANE3- and TMDS1_CLK-			
DDI1_PAIR4+	C25	Digital Display Interface 1, differential pair 4			Not supported
DDI1_PAIR4-	C26				
DDI1_PAIR5+	C29	Digital Display Interface 1, differential pair 5			Not supported
DDI1_PAIR5-	C30				
DDI1_PAIR6+	C15	Digital Display Interface 1, differential pair 6			Not supported
DDI1_PAIR6-	C16				
DDI1_HPD	C24	Multiplexed with DP1_HPD and HDMI1_HPD	I 3.3 V	PD 1 MΩ	
DDI1_CTRLCLK_AUX+	D15	Multiplexed with DP1_AUX+ and HMDI1_CTRLCLK		PD 100 kΩ	
		DP AUX+ function if DDI1_DDC_AUX_SEL is no connect	I/O DP		
		HDMI/DVI I ² C CTRLCLK if DDI1_DDC_AUX_SEL is pulled high	I/O OD 3.3 V		
DDI1_CTRLDATA_AUX-	D16	Multiplexed with DP1_AUX- and HDMI1_CTRLDATA		PU 100 kΩ	
		DP AUX- function if DDI1_DDC_AUX_SEL is no connect	I/O DP	3.3V	
		HDMI/DVI I ² C CTRLDATA if DDI1_DDC_AUX_SEL is pulled high	I/O OD 3.3 V		
DDI1_DDC_AUX_SEL	D34	Selects the function of DDI1_CTRLCLK_AUX+ and DDI1_CTRLDATA_AUX-	I 3.3 V	PD 1 MΩ	
		This pin shall have a IM pull-down to logic ground on the module. If this input is			
		floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the AUX pair			
	D00	contains the CTRLCLK and CTRLDATA signals.	0.00		
DDI2_PAIR0+	D39	Multiplexed with DP2_LANE0+ and TMDS2_DATA2+	O DP		
DDI2_PAIR0-	D40	Multiplexed with DP2_LANE0- and TMDS2_DATA2-	0.00		
DDI2_PAIR1+ DDI2_PAIR1-	D42 D43	Multiplexed with DP2_LANE1+ and TMDS2_DATA1+	O DP		
	+	Multiplexed with DP2_LANE1- and TMDS2_DATA1-	O DP		
DDI2_PAIR2+	D46	Multiplexed with DP2_LANE2+ and TMDS2_DATA0+	ODP		
DDI2_PAIR2-	D47	Multiplexed with DP2_LANE2- and TMDS2_DATA0-	0.00		
DDI2_PAIR3+	D49	Multiplexed with DP2_LANE3+ and TMDS2_CLK+	O DP		
DDI2_PAIR3-	D50	Multiplexed with DP2_LANE3- and TMDS2_CLK-	1221/	DD 1 MO	
DDI2_HPD	D44	Multiplexed with DP2_HPD and HDMI2_HPD	I 3.3 V	PD 1 MΩ	
DDI2_CTRLCLK_AUX+	C32	Multiplexed with DP2_AUX+ and HDMI2_CTRLCLK DP AUX+ function if DDI2_DDC_AUX_SEL is no connect	I/O DP	PD 100 kΩ	
		DP AUX+ function if DDI2_DDC_AUX_SEL is no connect HDMI/DVI I ² C CTRLCLK if DDI2_DDC_AUX_SEL is pulled high	1/O DP 1/O OD 3.3 V		
	C22	1 0	1/O OD 3.3 V	PU 100 kΩ	
DDI2_CTRLDATA_AUX-	C33	Multiplexed with DP2_AUX- and HDMI2_CTRLDATA DP AUX- function if DDI2_DDC_AUX_SEL is no connect	I/O DP	3.3 V	
		HDMI/DVI I ² C CTRLDATA if DDI2_DDC_AUX_SEL is no connect	1/O OD 3.3 V	J.J V	
		THE MILE OF THE DATA IT DE LE DECLAUX_SEL IS PUTTEUR HIGH	1/ U UU 3.3 V		

Signal	Pin	Description	I/O	PU/PD	Comment
DDI2_DDC_AUX_SEL	C34	Selects the function of DDI2_CTRLCLK_AUX+ and DDI2_CTRLDATA_AUX- This pin shall have a 1M pull-down to logic ground on the module. If this input is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the AUX pair contains the CTRLCLK and CTRLDATA signals	I 3.3V	PD 1 MΩ	
DDI3_PAIR0+ DDI3_PAIR0-	C39 C40	Multiplexed with DP3_LANE0+ and TMDS3_DATA2+ Multiplexed with DP3_LANE0- and TMDS3_DATA2-	O DP		Not supported
DDI3_PAIR1+ DDI3_PAIR1-	C42 C43	Multiplexed with DP3_LANE1+ and TMDS3_DATA1+ Multiplexed with DP3_LANE1- and TMDS3_DATA1-	O DP		Not supported
DDI3_PAIR2+ DDI3_PAIR2-	C46 C47	Multiplexed with DP3_LANE2+ and TMDS3_DATA0+ Multiplexed with DP3_LANE2- and TMDS3_DATA0-	O DP		Not supported
DDI3_PAIR3+ DDI3_PAIR3-	C49 C50	Multiplexed with DP3_LANE3+ and TMDS3_CLK+ Multiplexed with DP3_LANE3- and TMDS3_CLK-	O DP		Not supported
DDI3_HPD	C44	Multiplexed with DP3_HPD and HDMI3_HPD	13.3 V		Not supported
DDI3_CTRLCLK_AUX+	C36	Multiplexed with DP3_AUX+ and HDMI3_CTRLCLK DP AUX+ function if DDI3_DDC_AUX_SEL is no connect HDMI/DVI I ² C CTRLCLK if DDI3_DDC_AUX_SEL is pulled high	I/O DP I/O OD 3.3 V		Not supported
DDI3_CTRLDATA_AUX-	C37	Multiplexed with DP3_AUX- and HDMI3_CTRLDATA DP AUX- function if DDI3_DDC_AUX_SEL is no connect HDMI/DVI I ² C CTRLDATA if DDI3_DDC_AUX_SEL is pulled high	I/O DP I/O OD 3.3 V		Not supported
DDI3_DDC_AUX_SEL	C38	Selects the function of DDI3_CTRLCLK_AUX+ and DDI3_CTRLDATA_AUX- This pin shall have a IM pull-down to logic ground on the module. If this input is floating, the AUX pair is used for the DP AUX+/- signals. If pulled-high, the AUX pair contains the CTRLCLK and CTRLDATA signals	I 3.3 V		Not supported

Table 17 TMDS Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
TMDS1_CLK +	D36	TMDS Clock output differential pair	O DP		
TMDS1_CLK -	D37	Multiplexed with DDI1_PAIR3+ and DDI1_PAIR3-			
TMDS1_DATA0+	D32	TMDS differential pair	O DP		
TMDS1_DATA0-	D33	Multiplexed with DDI1_PAIR2+ and DDI1_PAIR2-			
TMDS1_DATA1+	D29	TMDS differential pair	O DP		
TMDS1_DATA1-	D30	Multiplexed with DDI1_PAIR1+ and DDI1_PAIR1-			
TMDS1_DATA2+	D26	TMDS differential pair	O DP		
TMDS1_DATA2-	D27	Multiplexed with DDI1_PAIR0+ and DDI1_PAIR0-			
HDMI1_HPD	C24	TMDSI Hot-plug detect	I DP	PD 1 MΩ	
		Multiplexed with DDI1_HPD			
HDMI1_CTRLCLK	D15	TMDS I ² C Control Clock	I/O OD 3.3 V	PD 100 kΩ	
		Multiplexed with DDI1_CTRLCLK_AUX+			
HDMI1_CTRLDATA	D16	TMDS I ² C Control Data	I/O OD 3.3 V	PU 100 kΩ	
		Multiplexed with DDI1_CTRLDATA_AUX-		3.3V	

Signal	Pin	Description	I/O	PU/PD	Comment
TMDS2_CLK +	D49	TMDS Clock output differential pair	O DP		
TMDS2_CLK -	D50	Multiplexed with DDI2_PAIR3+ and DDI2_PAIR3-			
TMDS2_DATA0+	D46	TMDS differential pair	O DP		
TMDS2_DATA0-	D47	Multiplexed with DDI2_PAIR2+ and DDI2_PAIR2-			
TMDS2_DATA1+	D42	TMDS differential pair	O DP		
TMDS2_DATA1-	D43	Multiplexed with DDI2_PAIR1+ and DDI2_PAIR1-			
TMDS2_DATA2+	D39	TMDS differential pair	O DP		
TMDS2_DATA2-	D40	Multiplexed with DDI2_PAIR0+ and DDI2_PAIR0-			
HDMI2_HPD	D44	TMDS Hot-plug detect	IDP	PD 1 MΩ	
		Multiplexed with DDI2_HPD			
HDMI2_CTRLCLK	C32	TMDS I ² C Control Clock	I/O OD 3.3 V	PD 100 kΩ	
		Multiplexed with DDI2_CTRLCLK_AUX+			
HDM12_CTRLDATA	C33	TMDS I ² C Control Data	I/O OD 3.3 V	PU 100 kΩ	
		Multiplexed with DDI2_CTRLDATA_AUX-		3.3 V	
TMDS3_CLK +	C49	TMDS Clock output differential pair	O DP		Not supported
TMDS3_CLK -	C50	Multiplexed with DDI3_PAIR3+ and DDI3_PAIR3-			
TMDS3_DATA0+	C46	TMDS differential pair	O DP		Not supported
TMDS3_DATA0-	C47	Multiplexed with DDI3_PAIR2+ and DDI3_PAIR2-			
TMDS3_DATA1+	C42	TMDS differential pair	O DP		Not supported
TMDS3_DATA1-	C43	Multiplexed with DDI3_PAIR1+ and DDI3_PAIR1-			
TMDS3_DATA2+	C39	TMDS differential pair	O DP		Not supported
TMDS3_DATA2-	C40	Multiplexed with DDI3_PAIR0+ and DDI3_PAIR0-			
HDMI3_HPD	C44	TMDS Hot-plug detect	I DP		Not supported
		Multiplexed with DDI3_HPD			
HDMI3_CTRLCLK	C36	TMDS I ² C Control Clock	I/O OD 3.3 V		Not supported
		Multiplexed with DDI3_CTRLCLK_AUX+			
HDMI3_CTRLDATA	C37	TMDS I ² C Control Data	I/O OD 3.3 V		Not supported
		Multiplexed with DDI3_CTRLDATA_AUX-			

Table 18 DisplayPort (DP) Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
DP1_LANE3+	D36	Uni-directional main link for the transport of isochronous streams and secondary data;	O DP		
DP1_LANE3-	D37	multiplexed with DDI1_PAIR3+ and DDI1_PAIR3-			
DP1_LANE2+	D32	Uni-directional main link for the transport of isochronous streams and secondary data;	O DP		
DP1_LANE2-	D33	multiplexed with DDI1_PAIR2+ and DDI1_PAIR2-			
DP1_LANE1+	D29	Uni-directional main link for the transport of isochronous streams and secondary data;	O DP		
DP1_LANE1-	D30	multiplexed with DDI1_PAIR1+ and DDI1_PAIR1-			
DP1_LANE0+	D26	Uni-directional main link for the transport of isochronous streams and secondary data;	O DP		
DP1_LANE0-	D27	multiplexed with DDI1_PAIR0+ and DDI1_PAIR0-			

Signal	Pin	Description	I/O	PU/PD	Comment
DP1_HPD	C24	Detection of Hot Plug / Unplug and notification of the link layer Multiplexed with DDI1_HPD	I 3.3 V	PD 1 MΩ	
DP1_AUX+	D15	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP	PD 100 kΩ	
DP1_AUX-	D16	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP	PU 100 kΩ 3.3 V	
DP2_LANE3+ DP2_LANE3-	D49 D50	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI2_PAIR3+ and DDI2_PAIR3-	O DP		
DP2_LANE2+ DP2_LANE2-	D46 D47	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI2_PAIR2+ and DDI2_PAIR2-	O DP		
DP2_LANE1+ DP2_LANE1-	D42 D43	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI2_PAIR1+ and DDI2_PAIR1-	O DP		
DP2_LANE0+ DP2_LANE0-	D39 D40	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI2_PAIR0+ and DDI1_PAIR0-	O DP		
DP2_HPD	D44	Detection of Hot Plug / Unplug and notification of the link layer Multiplexed with DDI2_HPD	I 3.3 V	PD 1 MΩ	
DP2_AUX+	C32	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP	PD 100 kΩ	
DP2_AUX-	C33	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP	PU 100 kΩ 3.3 V	
DP3_LANE3+ DP3_LANE3-	C49 C50	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI3_PAIR3+ and DDI3_PAIR3-	O DP		Not supported
DP3_LANE2+ DP3_LANE2-	C46 C47	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI3_PAIR2+ and DDI3_PAIR2-	O DP		Not supported
DP3_LANE1+ DP3_LANE1-	C42 C43	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI3_PAIR1+ and DDI3_PAIR1-	O DP		Not supported
DP3_LANE0+ DP3_LANE0-	C39 C40	Uni-directional main link for the transport of isochronous streams and secondary data; multiplexed with DDI3_PAIR0+ and DDI3_PAIR0-	O DP		Not supported
DP3_HPD	C44	Detection of hot plug / unplug and notification of the link layer; multiplexed with DDI3_HPD	I 3.3 V		Not supported
DP3_AUX+	C36	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP		Not supported
DP3_AUX-	C37	Half-duplex bi-directional AUX channel for services such as link configuration or maintenance and EDID access	I/O DP		Not supported

Table 19 Embedded DisplayPort Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
eDP_TX3+	A81	eDP differential pairs	AC coupled off		Not supported by default
eDP_TX3-	A82		module.		
eDP_TX2+	A71				
eDP_TX2-	A72				
eDP_TX1+	A73				
eDP_TX1-	A74				
eDP_TX0+	A75				
eDP_TX0-	A76				
eDP_VDD_EN	A77	eDP power enable	O 3.3 V		
eDP_BKLT_EN	B79	eDP backlight enable	O 3.3 V		
eDP_BKLT_CTRL	B83	eDP backlight brightness control	O 3.3 V		
eDP_AUX+	A83	eDP AUX+	AC coupled off		
			module		
eDP_AUX-	A84	eDP AUX-	AC coupled off		
			module		
eDP_HPD	A87	Detection of hot plug / unplug and notification of the link layer	I 3.3 V	PD 1M Ω	

The optional eDP interface requires a customized variant.

Table 20 CRT Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
VGA_RED	B89	Red for monitor; analog DAC output designed to drive a 37.5-Ohm equivalent load	O Analog		Not supported
VGA_GRN	B91	Green for monitor; analog DAC output designed to drive a 37.5-Ohm equivalent load	O Analog		
VGA_BLU	B92	Blue for monitor. Analog DAC output, designed to drive a 37.5-Ohm equivalent load	O Analog		
VGA_HSYNC	B93	Horizontal sync output to VGA monitor	O 3.3 V		
VGA_VSYNC	B94	Vertical sync output to VGA monitor	O 3.3 V		
VGA_I2C_CK	B95	DDC clock line (I ² C port dedicated to identify VGA monitor capabilities)	I/O OD 5 V		
VGA_I2C_DAT	B96	DDC data line	I/O OD 5 V		

The conga-TCA7 does not support VGA interface.

Table 21 LVDS Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
LVDS_A0+	A71	LVDS Channel A differential pairs	O LVDS		
LVDS_A0-	A72	·			
LVDS_A1+	A73				
LVDS_A1-	A74				
LVDS_A2+	A75				
LVDS_A2-	A76				
LVDS_A3+	A78				
LVDS_A3-	A79				
LVDS_A_CK+	A81	LVDS Channel A differential clock	O LVDS		
LVDS_A_CK-	A82				
LVDS_B0+	B71	LVDS Channel B differential pairs	O LVDS		
LVDS_B0-	B72	·			
LVDS_B1+	B73				
LVDS_B1-	B74				
LVDS_B2+	B75				
LVDS_B2-	B76				
LVDS_B3+	B77				
LVDS_B3-	B78				
LVDS_B_CK+	B81	LVDS Channel B differential clock	O LVDS		
LVDS_B_CK-	B82				
LVDS_VDD_EN	A77	LVDS panel power enable	O 3.3 V	PU 100 kΩ 3.3 V	
LVDS_BKLT_EN	B79	LVDS panel backlight enable	O 3.3 V	PU 100 kΩ 3.3 V	
LVDS_BKLT_CTRL	B83	LVDS panel backlight brightness control	O 3.3 V		
LVDS_I2C_CK	A83	DDC lines used for flat panel detection and control	I/O 3.3 V	PU 2k2 3.3 V	
LVDS_I2C_DAT	A84	DDC lines used for flat panel detection and control	I/O 3.3 V	PU 2k2 3.3 V	

Table 22 Serial ATA Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
SATA0_RX+	A19	Serial ATA channel 0, receive input differential pair	I SATA		Supports Serial ATA specification, Revision 3.0
SATA0_RX-	A20				
SATA0_TX+	A16	Serial ATA channel 0, transmit output differential pair	O SATA		Supports Serial ATA specification, Revision 3.0
SATA0_TX-	A17				
SATA1_RX+	B19	Serial ATA channel 1, receive input differential pair	I SATA		Supports Serial ATA specification, Revision 3.0
SATA1_RX-	B20				
SATA1_TX+	B16	Serial ATA channel 1, transmit output differential pair	O SATA		Supports Serial ATA specification, Revision 3.0
SATA1_TX-	B17				
SATA2_RX+	A25	Serial ATA channel 2, receive input differential pair	I SATA		Not supported
SATA2_RX-	A26				

Signal	Pin	Description	I/O	PU/PD	Comment
SATA2_TX+	A22	Serial ATA channel 2, transmit output differential pair	O SATA		Not supported
SATA2_TX-	A23				''
SATA3_RX+	B25	Serial ATA channel 3, receive input differential pair	I SATA		Not supported
SATA3_RX-	B26				
SATA3_TX+	B22	Serial ATA channel 3, transmit output differential pair	O SATA		Not supported
SATA3_TX-	B23				
(S)ATA_ACT#	A28	Serial ATA activity indicator, active low	I/O 3.3 V		

Table 23 USB 2. 0 Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
USB0+	A46	USB Port 0, data + or D+	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB0-	A45	USB Port 0, data - or D-	1/0		
USB1+	B46	USB Port 1, data + or D+	1/0		
USB1-	B45	USB Port 1, data - or D-	1/0		
USB2+	A43	USB Port 2, data + or D+	1/0		
USB2-	A42	USB Port 2, data - or D-	1/0		
USB3+	B43	USB Port 3, data + or D+	1/0		
USB3-	B42	USB Port 3, data - or D-	1/0		
USB4+	A40	USB Port 4, data + or D+	1/0		
USB4-	A39	USB Port 4, data - or D-	1/0		
USB5+	B40	USB Port 5, data + or D+	1/0		
USB5-	B39	USB Port 5, data - or D-	1/0		
USB6+	A37	USB Port 6, data + or D+	1/0		
USB6-	A36	USB Port 6, data - or D-	1/0		
USB7+	B37	USB Port 7, data + or D+	1/0		
USB7-	B36	USB Port 7, data - or D-	1/0		
USB_0_1_OC#	B44	USB over-current sense, USB ports 0 - 7. A pull-up for this line shall	I	PU 10 kΩ	Do not pull this line high on the carrier board
		be present on the module. An open drain driver from a USB current	3.3 VSB	3.3 VSB	
USB_2_3_OC#	A44	monitor on the carrier board may drive this line low	I	PU 10 kΩ	Do not pull this line high on the carrier board
			3.3 VSB	3.3 VSB	
USB_4_5_OC#	B38			PU 10 kΩ	Do not pull this line high on the carrier board
			3.3 VSB	3.3 VSB	
USB_6_7_OC#	A38			PU 10 kΩ	Do not pull this line high on the carrier board
	D.46		3.3 VSB	3.3 VSB	l l
USB0_HOST_	B48	Module USB client may detect the presence of a USB host on USB0. A		PD 100 kΩ	Not supported
PRSNT		high values indicates that a host is present	3.3 VSB		

Table 24 USB 3.0 Signal Descriptions

Signal	Pin	Description	1/0	PU/PD	Comment
USB_SSRX0+	C4	Additional receive signal differential pairs for the Superspeed USB data path			
USB_SSRX0-	C3		I		
USB_SSTX0+	D4	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX0-	D3		0		
USB_SSRX1+	C7	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX1-	C6		I		
USB_SSTX1+	D7	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX1-	D6		0		
USB_SSRX2+	C10	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX2-	C9		I		
USB_SSTX2+	D10	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX2-	D9		0		
USB_SSRX3+	C13	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSRX3-	C12		I		
USB_SSTX3+	D13	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSTX3-	D12		0		

Table 25 Gigabit Ethernet Signal Descriptions

Gigabit Ethernet	Gigabit Ethernet Pin Description				I/O	PU/PD	Comment	
GBE0_MDI0+	A13		ntroller 0: Media Depend			I/O Analog		
GBE0_MDI0-	A12		000, 100, and 10 Mbps r	nodes. Some pairs are ι	inused in some modes			
GBE0_MDI1+	A10	according to the follo	owing:					
GBE0_MDI1-	A9							
GBE0_MDI2+	A7		1000BASE-T	100BASE-TX	10BASE-T			
GBE0_MDI2-	A6	MDI[0]+/-	B1_DA+/-	TX+/-	TX+/-			
GBE0_MDI3+ GBE0 MDI3-	A3 A2	MDI[1]+/-	B1_DB+/-	RX+/-	RX+/-			
ODEO_IVIDI3-	AZ	MDI[2]+/-	B1_DC+/-					
		MDI[3]+/-	B1_DD+/-					
GBE0_ACT#	B2	Gigabit Ethernet Cor	ntroller 0 activity indicate	or, active low		OD 3.3 V	PU 100 kΩ 3.3 V	
GBE0_LINK# 1, 2	A8	Gigabit Ethernet Cor	gabit Ethernet Controller 0 link indicator, active low				PU 100 kΩ 3.3 V	
GBE0_LINK100# ²	A4	Gigabit Ethernet Cor	igabit Ethernet Controller 0 100 Mbps link indicator, active low				PU 100 kΩ 3.3 V	
GBE0_LINK1000# ²	A5	Gigabit Ethernet Cor	ntroller 0 1000 Mbps link	indicator, active low		OD 3.3 V	PU 100 kΩ 3.3 V	

Gigabit Ethernet	Pin	Description	I/O	PU/PD	Comment
GBE0_CTREF	A14	Reference voltage for Carrier Board Ethernet channel 0 magnetics center tap. The reference voltage is determined by the requirements of the module PHY and may be as low as 0 V and as high as 3.3 V. The reference voltage output shall be current limited on the module. In the case in which the reference is shorted to ground, the current shall be limited to 250 mA or less.	REF		Not connected
GBE0_SDP	A49	Gigabit Ethernet Controller 0 Software-Definable Pin. Can also be used for IEEE1588 support such as a 1 pps signal	1/0		

- ^{1.} The GBE0_LINK# output is not active during a 10 Mb connection. It is only active during a 100 Mb or 1 Gb connection. This is a limitation of Ethernet Phy since it only has 3 LED outputs—ACT#, LINK100# and LINK1000#.
- ² The GBE0_LINK# signal is a logic AND of the GBE0_LINK100# and GBE0_LINK1000# signals on the conga-TCA7 module.

Table 26 High Definition Audio Link Signals Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
HDA_RST# ²	A30	Reset output to codec; active low	O 3.3 V		
HDA_SYNC ²	A29	Sample-synchronization signal to the codec(s)	O 3.3 V		
HDA_BITCLK ²	A32	Serial data clock generated by the external codec(s)	O 3.3 V		
HDA_SDOUT 1,2	A33	Serial TDM data output to the codec	O 3.3 V		
HDA_SDIN[1:0]	B29-B30	Serial TDM data inputs from up to three codecs	I 3.3 V		HDA_SDIN2 (pin B28) is not connected

- ^{1.} This signal has special functionality during the reset process. It may bootstrap some basic important functions of the module. For more information refer to section 8.2 "Bootstrap Signals".
- ^{2.} AC'97 codecs are not supported.

Table 27 LPC Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
LPC_AD[0:3]	B4-B7	LPC Mode: LPC multiplexed address, command and data bus	I/O 3.3 V	PU 20 KΩ 3.3 V	
LPC_FRAME#	В3	LPC Mode: LPC Frame indicates the start of a LPC cycle.	O 3.3 V		
LPC_CLK	B10	LPC Mode: LPC clock output, 33MHz	O 3.3 V		
LPC_DRQ[0:1]#	B8	LPC Mode: LPC serial DMA request	13.3 V		Not supported
LPC_SERIRQ	A50	LPC Mode: LPC serial interrupt	I/O 3.3 V	PU 10 KΩ 3.3 V	
SUS_STAT#	B18	LPC Mode: Indicates imminent suspend operation. It is used to notify LPC devices that a low power state will be entered soon. LPC devices may need to preserve memory or isolate outputs during the low power state.	O 3.3 V		
ESPI_EN# ¹	B47	This signal is used by the carrier to indicate the operating mode of the LPC/eSPI bus. If left unconnected on the carrier, LPC mode (default) is selected.	I		Not supported
		If pulled to GND on the carrier, eSPI mode is selected. This signal is pulled to a logic high on the module through a resistor. The carrier should only float this line or pull it low.			

^{1.} The conga-TCA7 does not support eSPI mode.

Table 28 SPI BIOS Flash Interface Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
SPI_CS#	B97	Chip select for Carrier Board SPI BIOS Flash	O 3.3 VSB	PU 100 KΩ 3.3 VSB	Carrier shall pull to SPI_POWER when external SPI is provided but not used
SPI_MISO	A92	Data in to module from carrier board SPI BIOS flash	I 3.3 VSB		
SPI_MOSI ¹	A95	Data out from module to carrier board SPI BIOS flash	O 3.3 VSB	PU 75 KΩ 1.8 VSB	
SPI_CLK	A94	Clock from module to carrier board SPI BIOS flash	O 3.3 VSB	PD 100 KΩ	
SPI_POWER	A91	Power source for carrier board SPI BIOS flash SPI_POWER shall be used to power SPI BIOS flash on the carrier only	3.3 VSB		
BIOS_DIS0# 1	A34	Selection strap to determine the BIOS boot device	I 3.3 VSB		Carrier shall be left as no-connect
BIOS_DIS1# 1	B88	Selection strap to determine the BIOS boot device Refer to table 4.13 of the COM Express Module Base Specification 3.0 for strapping options of BIOS disable signals	I 3.3 VSB	PU 10 KΩ 3.3 VSB	Carrier shall be left as no-connect

^{1.} Signal has special functionality during the reset process and may bootstrap some basic important functions of the module. For more information refer to section 8.2 "Bootstrap Signals".

Table 29 Miscellaneous Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
I2C_CK	B33	General purpose I ² C port clock output/input	I/O 3.3 V	PU 2K2 3.3 VSB	
I2C_DAT	B34	General purpose I ² C port data I/O line	I/O 3.3 V	PU 2K2 3.3 VSB	
SPKR ¹	B32	Output for audio enunciator, the "speaker" in PC-AT systems	O 3.3 V		
WDT	B27	Output indicating that a watchdog time-out event has occurred	O 3.3 V	PD 100 ΚΩ	
FAN_PWMOUT ²	B101	Fan speed control	O OD	PU 10KΩ 3.3 VSB	
		Uses the Pulse Width Modulation (PWM) technique to control the fan's RPM	3.3 V		
FAN_TACHIN ²	B102	Fan tachometer input	IOD	PU 47 KΩ 3.3 V	Requires a fan with a two pulse output
TPM_PP	A96	Physical Presence pin of Trusted Platform Module (TPM); active high TPM chip has an internal pull-down. This signal is used to indicate Physical Presence to the TPM	I 3.3 V	PD 10 ΚΩ	

^{1.} This signal has special functionality during the reset process. It may bootstrap some basic important functions of the module. For more information refer to section 8.2 "Bootstrap Signals".

Table 30 General Purpose I/O Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
GPO0	A93	General purpose output pin, shared with SD_CLK Output from COM Express, input to SD	O 3.3 V		
GPO1	B54	General purpose output pin, shared with SD_CMD Output from COM Express, input to SD	O 3.3 V		
GPO2	B57	General purpose output pin, shared with SD_WP Output from COM Express, input to SD	O 3.3 V		
GPO3	B63	General purpose output pin, shared with SD_CD Output from COM Express, input to SD	O 3.3 V		
GPI0	A54	General purpose input pin (bidirectional signal) Pulled high internally on the module; shared with SD_DATA0	I 3.3 V	PU 100KΩ 3.3 V	Pull-up only active in GPIO mode
GPI1	A63	General purpose input pin (bidirectional signal) Pulled high internally on the module; shared with SD_DATA1	I 3.3 V		
GPI2	A67	General purpose input pin (bidirectional signal) Pulled high internally on the module; shared with SD_DATA2	I 3.3 V		
GPI3	A85	General purpose input pin (bidirectional signal) Pulled high internally on the module; shared with SD_DATA3	I 3.3 V		

The conga-TCA7 provides GPIO signals on the COM Express connector by default.

^{2.} Pins are protected on the module by a series schottky diode.

Table 31 Power and System Management Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
PWRBTN#	B12	Power button to bring system out of S5 (soft off), active on falling edge Note: For proper detection, assert a pulse width of at least 16 ms.	I 3.3 VSB	PU 100 kΩ 3.3 VSB	
SYS_RESET#	B49	Reset button input. Active low input. Edge triggered System will not be held in hardware reset while this input is kept low Note: For proper detection, assert a pulse width of at least 16 ms.	I 3.3 VSB	PU 10 kΩ 3.3 VSB	
CB_RESET#	B50	Reset output from module to Carrier Board Active low, issued by module chipset and may result from a low SYS_RESET# input, a low PWR_OK input, a VCC_12V power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the module software.	O 3.3 V	PD 100 kΩ	
PWR_OK	B24	Power OK from main power supply. A high value indicates that the power is good	I 3.3 V	PU 10 kΩ 3.3 VSB	Connected via series diode to onboard voltage monitor
SUS_STAT#	B18	Indicates imminent suspend operation; used to notify LPC devices	O 3.3 VSB		
SUS_S3#	A15	Indicates system is in Suspend to RAM state (active-low output). An inverted copy of SUS_S3# on the carrier board (also known as "PS_ON") may be used to enable the non-standby power on a typical ATX power supply.	O 3.3 VSB		
SUS_S4#	A18	Indicates system is in Suspend to Disk state. Active low output	O 3.3 VSB		
SUS_S5#	A24	Indicates system is in Soft Off state	O 3.3 VSB	PD 100 kΩ	
WAKE0#	B66	PCI Express wake up signal	1 3.3 VSB	PU 10 kΩ 3.3 VSB	
WAKE1#	B67	General purpose wake up signal May be used to implement wake-up on PS/2 keyboard or mouse activity	I 3.3 VSB	PU 10 kΩ 3.3 VSB	
BATLOW#	A27	Battery low input This signal may be driven low by external circuitry to signal that the system battery is low, or may be used to signal some other external power-management event.	I 3.3 VSB	PU 10 kΩ 3.3 VSB	
LID# 1	A103	Lid button used by the ACPI operating system for a LID switch Note: For proper detection, assert a pulse width of at least 16 ms.	I OD 3.3 V	PU 10 kΩ 3.3 VSB	
SLEEP# 1	B103	Sleep button used by the ACPI operating system to bring the system to sleep state or to wake it up again. Note: For proper detection, assert a pulse width of at least 16 ms.	I OD 3.3 V	PU 100 kΩ 3.3 VSB	

^{1.} Pins are protected on the module by a series schottky diode.

Table 32 Rapid Shutdown Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
RAPID_SHUTDOWN	C67	Trigger for Rapid Shutdown	1 3.3 V		Not connected
		Must be driven to 5V though a <=50 ohm source impedance for ≥ 20 µs			

The conga-TCA7 does not support Rapid Shutdown.

Table 33 Thermal Protection Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
THRM#	B35	Input from off-module temp sensor indicating an over-temp situation	I 3.3 V	PU 10 kΩ 3.3 V	
THRMTRIP#	A35	Active low output indicating that the CPU has entered thermal shutdown	O 3.3 V	PU 10 kΩ 3.3 V	

Table 34 SMBus Signal Description

Signal	Pin	Description	I/O	PU/PD	Comment
SMB_CK	B13	System Management Bus bidirectional clock line	I/O 3.3 VSB	PU 2k2 3.3 VSB	
SMB_DAT#	B14	System Management Bus bidirectional data line	I/O OD 3.3 VSB	PU 2k2 3.3 VSB	
SMB_ALERT#		System Management Bus Alert – active low input can be used to generate an SMI# (System Management Interrupt) or to wake the system	I 3.3 VSB	PU 10 kΩ 3.3 VSB	

Table 35 General Purpose Serial Interface Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
SERO_TX 1,2	A98	General purpose serial port transmitter	O 3.3 V		
SER1_TX 1,2	A101	General purpose serial port transmitter	O 3.3 V		
SERO_RX ¹	A99	General purpose serial port receiver	I 3.3 V	PU 47 kΩ 3.3 V	
SER1_RX ¹	A102	General purpose serial port receiver	I 3.3 V	PU 47 kΩ 3.3 V	

- ^{1.} Pins are protected on the module by a series schottky diode.
- ^{2.} Pull-down resistor is required on the carrier board for proper logic level.

Table 36 Module Type Definition Signal Description

Signal	Pin	Description	1			1/0	Comment
TYPE0# C54 TYPE1# C57 TYPE2# D57	1	The TYPE pins indicate to the carrier board the pinout type that is implemented on the module. The pins are tied on the module to either ground (GND) or are no-connects (NC). For pinout Type 1, these pins are don't care (X).					TYPE[0:2]# signals are available on all modules following the Type 2-6
		TYPE2#	TYPE1#	TYPE0#			Pinout standard.
		X NC NC NC NC NC GND	X NC NC GND GND NC	X NC GND NC GND NC	Pinout Type 1 Pinout Type 2 Pinout Type 3 (no IDE) Pinout Type 4 (no PCI) Pinout Type 5 (no IDE, no PCI) Pinout Type 6 (no IDE, no PCI)		The conga-TC370 is based on the COM Express Type 6 pinout therefore the pins 0 and 1 are not connected and pin 2 is connected to GND.
		off (e.g deacti	vates the ATX_ON	signal for an ATX p	ogic that monitors the module 'TYPE' pins and keeps power ower supply) if an incompatible module pin-out type is ndicator such as an LED.		
TYPE10#	A97		ne carrier board tha ne carrier that a Rev			PDS	Not connected to indicate "Pinout R2.0".
		TYPE10#					
		NC PD 12V		Pinout R2.0 Pinout Type Pinout R1.0	10 pull down to ground with 4.7k resistor		
		This pin is recl	aimed from VCC_1	2V pool. In R1.0 mc	odules this pin will connect to other VCC_12V pins.	-	
			n. R2.0 module Typ		1-6. A carrier can detect a R1.0 module by the presence of ect this pin. Type 10 modules shall pull this pin to ground		

Table 37 Power and GND Signal Descriptions

Signal	Pin	Description	I/O	PU/PD	Comment
VCC_12V	A104-A109 B104-B109	Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used.	Р		
	C104-C109 D104-D109				
VCC_5V_SBY	B84-B87	Standby power input: +5.0V nominal. If VCC5_SBY is used, all available VCC_5V_SBY pins on the connector(s) shall be used.	Р		
		Only used for standby and suspend functions. May be left unconnected if these functions are not used in the system design.			
VCC_RTC	A47	Real-time clock circuit-power input. Nominally +3.0V.	Р		
GND	A1, A11, A21, A31, A41, A51, A57, A60, A66, A70, A80, A90, A100, A110, B1, B11, B21, B31, B41, B51, B60, B70, B80, B90, B100, B110 C1, C2, C5, C8, C11, C14, C21, C31, C41, C51, C60, C70, C73, C76, C80, C84, C87, C90, C93, C96, C100, C103, C110, D1, D2, D5, D8, D11, D14, D21, D31, D41, D51, D60, D67, D70, D73, D76, D80, D84, D87, D90, D93, D96, D100, D103, D110	Ground: DC power and signal and AC signal return path. All available GND connector pins shall be used and tied to Carrier Board GND plane.	P		

8.2 Bootstrap Signals

Table 38 Bootstrap Signal Descriptions

Signal	Pin #	Description of Bootstrap Signal	I/O	PU/PD	Comment
SPKR	B32	Output for audio enunciator, the "speaker" in PC-AT systems	O 3.3 V	PU(i) 20 kΩ	
SPI_MOSI	A95	Data out from module to carrier board SPI BIOS flash	O 3.3 VSB	PU(i) 20 kΩ	
HDA_SDOUT	A33	High Definition Audio Serial Data Output	O 3.3 VSB	PU(i) 20 kΩ	
BIOS_DIS0#	A34	Selection strap to determine the BIOS boot device	I 3.3 VSB	PU 10 KΩ 3.3 VSB	Carrier shall be left as no-connect
BIOS_DIS1#		Selection strap to determine the BIOS boot device		PU 10 KΩ 3.3 VSB	Carrier shall be left as no-connect
		Refer to table 4.13 of the COM Express Module Base Specification 3.0 for			
		strapping options of BIOS disable signals			

Caution

- 1. The signals listed in the table above are used as chipset configuration straps during system reset. In this condition (during reset), they are inputs that are pulled to the correct state by either COM Express™ internally implemented resistors or chipset internally implemented resistors that are located on the module.
- 2. No external DC loads or external pull-up or pull-down resistors should change the configuration of the signals listed in the above table. External resistors may override the internal strap states and cause the COM Express™ module to malfunction and/or cause irreparable damage to the module.

9 System Resources

9.1 I/O Address Assignment

On the conga-TA7, the Platform P2SB acts as the subtractive decoding agent. Fixed I/O addresses positively decoded by system agents are listed in table 39 "I/O Address Assignment". These Fixed address ranges are either positively decoded in the system agent or subtractively routed to the Primary to Sideband Bridge (P2SB). Many of the fixed I/O accesses are claimed by the P2SB and forwarded to their functional target via the sideband fabric.

Address ranges that are not listed or reserved are not positively decoded by the PCH (unless assigned to one of the variable ranges). These address ranges are terminated internally by the PCH.

Table 39 I/O Address Assignment

Device	IO Address				
Interrupt Controller	20h-21h, 24h-25h, 28h-29h, 2Ch-2Dh, 30h-31h, 34h-35h, 38h-39h, 3Ch-3Dh, A0h- A1h,				
	A4h-A5h, A8h-A9h, ACh-ADh, B0h-B1h, B4h-B5h, B8h-B9h, Bch-BDh, 4D0h-4D1h				
8254 Timers	40h-43h, 50h-53h				
NMI Controller (CPU I/F)	61h, 63h, 65h, 67h				
Reset Generator (CPU I/F)	92h				
RTC	70h-77h				
Reset Generator (CPU)	CF9h				
PMC	B2h-B3h				
eSPI	2Eh-2F, 4Eh-4Fh, 60h, 62h, 64h, 66h, 80h, 84h-86h, 8Ch-8Eh, 90h, 94h-96h, 98h, 9Ch-9Eh, 200-207h, 208-20Fh, E00h - EFFh				

9.1.1 LPC Bus

The LPC interface is connected by default to the eSPI controller of the SoC via a Microchip ECE1200 eSPI to LPC bridge (Secondary Slave).

9.2 PCI Configuration Space Map

Table 40 PCI Configuration Space Map

Bus Number (hex)	Device Number (hex)	Function Number (hex)	Device ID	Description and Device ID
00h	00h	00h	0x452E	Host bridge
00h	02h	00h	0x4571	Graphics and display
00h	08h	00h	0x4511	Gauss Newton Algorithm (GNA) registers
00h	11h	00h	0x4B96	Intel® PSE: UART controller #0
00h	11h	01h	0x4B97	Intel® PSE: UART controller #1
00h	12h	00h	0x4B37	Intel® Serial I/O: SPI controller #2
00h	14h	00h	0x4B7D	USB eXtensible Host Controller Interface (xHCI)
00h	14h	02h	0x4B7F	Memory controller
00h	16h	00h	0x4B70	Intel® Converged Security Engine (Intel® CSE)
00h	17h	00h	0x4B63	SATA controller (AHCI)
00h	18h	00h	0x4BC0	Intel® Programmable Services Engine (Intel® PSE): I2C controller #7
00h	18h	01h	0x4BC1	Intel® PSE: CAN controller #0
00h	1Ah	00h	0x4B47	embedded Multi Media Card (eMMC) controller
00h	1Ah	01h	0x4B48	Secure Digital (SD) & Secure Digital I/O controller
00h	1Bh	00h	0x4BB9	Intel® PSE: Inter-Integrated Circuit (I2C) controller #0
00h	1Ch	00h	0x4B38	PCIe* Root Port #0 (PCIe 0, Single VC) 1
00h	1Ch	01h	0x4B39	PCIe* Root Port #1 (PCIe 0, Single VC) 1
00h	1Ch	02h	0x4B3A	PCIe* Root Port #2 (PCIe 0, Single VC) 1
00h	1Ch	03h	0x4B3B	PCIe* Root Port #3 (PCIe 0, Single VC) 1
00h	1Ch	04h	0x4B3C	PCIe* Root Port #4 (PCIe 1, Multi VC) 1
00h	1Ch	05h	0x4B3D	PCIe* Root Port #5 (PCIe 2, Multi VC) 1
00h	1Ch	06h	0x4B3E	PCIe* Root Port #6 (PCIe 3, Multi VC) 1
00h	1Dh	00h	0x4BB3	Intel® Programmable Services Engine (Intel® PSE): Local Host to PSE (LH2OSE) IPC
00h	1Dh	01h	0x4BA0	Intel® PSE: Gigabit Ethernet Time Sensitive Networking (TSN) controller #0 (RGMII: 1 Gb mode)
00h	1Fh	00h	0x4B00	Enhanced Serial Peripheral Interface (eSPI) controller
00h	1Fh	01h	0x4B20	Primary to Sideband Bridge (P2SB)
00h	1Fh	02h	0x4B21	Power Management Controller (PMC)
00h	1Fh	03h	0x4B58	Converged Audio, Voice, Speech (cAVS) controller
00h	1Fh	04h	0x4B23	System Management Bus (SMBus) controller

00h	1Fh	05h	0x4B24	Serial Peripheral Interface (SPI) controller for flash & TPM
00h	1Fh	07h	0x4B26	Intel® trace hub

- ^{1.} The PCI Express ports is visible only if the PCI Express port is set to "Enabled" or "Auto" in the BIOS setup menu and the device is attached to the corresponding PCI Express port on the carrier board.
- ^{2.} Internal PCI devices not connected to the conga-TA7 are not listed.

9.3 I²C Bus

No onboard resource is connected to the I²C bus. Address 16h is reserved for congatec Battery Management solutions.

9.4 SMBus

The SMBus signals are connected to the Intel chipset and are not intended to be used by off-board non-system management devices. For more information about this subject, contact congatec technical support.

10 BIOS Setup Description

The BIOS setup description of the conga-TCA7 can be viewed without having access to the module. However, access to the restricted area of the congatec website is required in order to download the necessary tool (CgMlfViewer) and Menu Layout File (MLF).

The MLF contains the BIOS setup description of a particular BIOS revision. The MLF can be viewed with the CgMlfViewer tool. This tool offers a search function to quickly check for supported BIOS features. It also shows where each feature can be found in the BIOS setup menu.

For more information, read the application note "AN42 - BIOS Setup Description" available at www.congatec.com.

If you do not have access to the restricted area of the congatec website, contact your local congatec sales representative.

10.1 Navigating the BIOS Setup Menu

The BIOS setup menu shows the features and options supported in the congatec BIOS. To access and navigate the BIOS setup menu, press the or <F2> key during POST. The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

10.2 BIOS Versions

The BIOS displays the BIOS project name and the revision code during POST, and on the main setup screen. The initial production BIOS for conga-TCA7 is identified as TA70R0xx, where:

- R is the identifier for a BIOS ROM file
- 0 is the so called feature number
- xx is the major and minor revision number

The TA70 binary size is 32 MB.

10.3 Updating the BIOS

BIOS updates are recommended to correct platform issues or enhance the feature set of the module. The conga-TCA7 features a congatec/AMI AptioEFI firmware on an onboard flash ROM chip. You can update the firmware with the congatec System Utility. The utility has five versions—UEFI shell, DOS based command line¹, Win32 command line, Win32 GUI, and Linux version.

For more information about "Updating the BIOS" refer to the user's guide for the congatec System Utility "CGUTLm1x.pdf" on the congatec website at www.congatec.com.

1. Deprecated

Caution

The DOS command line tool is not officially supported by congatec and therefore not recommended for critical tasks such as firmware updates. We recommend to use only the UEFI shell for critical updates.

10.3.1 Update from External Flash

For instructions on how to update the BIOS from external flash, refer to the AN7_External_BIOS_Update.pdf application note on the congatec website at http://www.congatec.com.

10.4 Supported Flash Devices

The conga-TCA7 supports the following flash device:

• Macronix MX25L25645G (32 MB)

The flash device listed above can be used on the carrier board to support external BIOS. For more information about external BIOS support, refer to the Application Note AN7_External_BIOS_Update.pdf on the congatec website at http://www.congatec.com.

